Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (6): 26-33    DOI: 10.13523/j.cb.20180604
研究报告     
酵母来源α-1,2甘露糖转移酶Alg11的异源表达、纯化和活性分析 *
李庆猛,李盛陶,王宁,高晓冬()
江南大学生物工程学院 糖化学与生物技术教育部重点实验室 无锡 214122
Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11
Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO()
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology,Jiangnan University, Wuxi 214122, China
 全文: PDF(1410 KB)   HTML
摘要:

糖基转移酶Alg11作为N-糖基化途径中一个重要蛋白,功能为催化将甘露糖转移到底物DPGn2M3(Dolichyl-pyrophosphate-GlcNAc2Mannose3)上进而生成DPGn2M4和DPGn2M5这两种多萜醇寡糖前体的反应。在本研究中,首先通过对酿酒酵母Alg11的蛋白质结构进行分析,设计了去除跨膜域的蛋白Alg1145-548并成功在大肠杆菌中表达,进而对诱导时间、诱导剂浓度进行了产量最大化的优化,最终得到了纯化蛋白。以PPGn2(Phytanyl-pyrophosphate-GlcNAc2)为底物,利用体外表达的重组蛋白Alg1ΔTM和Trx-Alg2以酶法合成出Alg11的天然底物类似物PPGn2M3。用纯化的Alg1145-548蛋白催化转糖基反应,并通过液质联用(LC-MS)的方法检测产物,证实Alg1145-548蛋白具有催化PPGn2M3生成PPGn2M4和PPGn2M5的糖基转移酶活性。产物PPGn2M5通过不同的甘露糖苷酶酶切反应,验证了两个新加上的甘露糖以α-1,2糖苷键的形式连接到底物PPGn2M3上。底物特异性实验表明Alg1145-548可以特异性识别底物PPGn2M3,而其他N-糖基化中间体类似物如PPGn2和PPGn2M1无法被识别,且底物中的脂肪链结构也对酶的识别具有重要作用。Alg11的底物特异性保证了多萜醇寡糖前体的有序合成,具有重要的生理意义。

关键词: N-糖基化糖基转移酶Alg11液质联用(LC-MS)诱导条件    
Abstract:

Glycosyltransferase Alg11, which is an important protein in N-glycosylation pathway, transfers the mannose moiety from GDP-Man to DPGn2M3 (Dolichyl-pyrophosphate-GlcNAc2Mannose3), forming DPGn2M4 and DPGn2M5 LLO (lipid-linked oligosaccharide) precursors. The structural analysis of Saccharomyces cerevisiae Alg11 showed the prediction of a hydrophobic N-terminal transmembrane domain. Thus, truncated Alg11 lacking the first 44 amino acid was designed and successfully overexpressed in Escherichia coli. The induction time and inducer concentration were optimized and the recombinant protein Alg1145-548 was purified. After the transferase activity assay, reaction mixture was applied to the liquid chromatography tandem mass spectrometry (LC-MS), which showed Alg1145-548 was capable to generate PPGn2M5 (Phytanyl-pyrophosphate-GlcNAc2Mannose5) from substrate PPGn2M3. Structural analysis of Gn2M5 showed the newly formed two glycosidic bonds could be cleaved by α-1,2 mannosidase, meaning the two mannose moieties were attached to Gn2M3 by α-1,2 linkages. Substrate specificity assay indicated the recombinant Alg11 specifically recognized PPGn2M3 rather than other LLOs, such as PPGn2 and PPGn2M1. Additionally, oligosaccharide Gn2M3 was not elongated by Alg1145-548, suggesting the lipid chain in the substrate PPGn2M3 was critical for the recognition. The achievement of active Alg11 provides an effective tool for producing Gn2M5, as well as for the further investigation of kinetic and mechanistic features of related mannosyltransferases.

Key words: N-glycosylation    Glycosyltransferase Alg11    Liquid chromatography tandem mass spectrometry (LC-MS)    Induction condition
收稿日期: 2018-01-23 出版日期: 2018-07-06
ZTFLH:  Q786  
基金资助: * 国家自然科学基金(21778023);江苏省自然科学基金(BK20170174);中央高校自主科研计划青年基金资助项目(JUSRP11727)
通讯作者: 高晓冬     E-mail: xdgao@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李庆猛
李盛陶
王宁
高晓冬

引用本文:

李庆猛,李盛陶,王宁,高晓冬. 酵母来源α-1,2甘露糖转移酶Alg11的异源表达、纯化和活性分析 *[J]. 中国生物工程杂志, 2018, 38(6): 26-33.

Qing-meng LI,Sheng-tao LI,Ning WANG,Xiao-dong GAO. Expression, Purification and Activity Assay of Yeast α-1,2 Mannosyltransferase Alg11. China Biotechnology, 2018, 38(6): 26-33.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180604        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I6/26

图1  Alg11蛋白质跨膜域结构分析
图2  表达质粒pET28a-Alg1145-548的构建
图3  诱导时间(a)和IPTG浓度(b)对目的蛋白表达的影响
图4  全细胞和纯化后蛋白质电泳图(a)和Western blot验证图(b)
图5  重组蛋白活性分析及产物检测
图6  甘露糖苷酶验证产物
图7  Alg1145-548的底物特异性
[1] Wiedwerschain G Y . Essentials of glycobiology. Biochemistry, 2009,74(9):1056-1056.
[2] Larkin A, Imperiali B . The expanding horizons of asparagine-linked glycosylation. Biochemistry, 2011,50(21):4411-4426.
doi: 10.1021/bi200346n pmid: 21506607
[3] Bickel T, Lehle L, Schwarz M , et al. Biosynthesis of lipid-linked oligosaccharides in saccharomyces cerevisiae Alg13p and Alg14p from a complex required for the formation of GlcNAc2-PP-dolichol. Journal of Biological Chemistry, 2005,280(41):34500-34506.
doi: 10.1074/jbc.M506358200
[4] Gao X D, Tachikawa H, Sato T , et al. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. Journal of Biological Chemistry, 2005,280(43):36254-36262.
doi: 10.1074/jbc.M507569200
[5] Gao X D, Moriyama S, Miura N , et al. Interaction between the C termini of Alg13 and Alg14 mediates formation of the active UDP-N-acetylglucosamine transferase complex. Journal of Biological Chemistry, 2008,283(47):32534-32541.
doi: 10.1074/jbc.M804060200
[6] O’Reilly M K, Zhang G F, Imperiali B . In vitro evidence for the dual function of Alg2 and Alg11: essential mannosyltransferases in N-Linked glycoprotein biosynthesis. Biochemistry, 2006,45(31):9593-9603.
doi: 10.1021/bi060878o pmid: 16878994
[7] Ramírez A S, Boilevin J, Lin C W , et al. Chemo-enzymatic synthesis of lipid-linked GlcNAc2Man5 oligosaccharides using recombinant Alg1, Alg2 and Alg11 proteins. Glycobiology, 2017: 1-8.
doi: 10.1093/glycob/cwx045 pmid: 28575298
[8] Burda P, Aebi M . The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta, 1999,1426(2):239-257.
doi: 10.1016/S0304-4165(98)00127-5
[9] Schwarz F, Aebi M . Mechanisms and principles of N-linked protein glycosylation. Current Opinion in Structural Biology, 2011,21(5):576-582.
doi: 10.1016/j.sbi.2011.08.005 pmid: 21978957
[10] Jr D R, Imperiali B . Oligosaccharyl transferase: gatekeeper to the secretory pathway. Current Opinion in Chemical Biology, 2002,6(6):844-850.
doi: 10.1016/S1367-5931(02)00390-3 pmid: 12470740
[11] Cipollo J F, Trimble R B, Chi J H , et al. The yeast ALG11 gene specifies addition of the terminal alpha 1,2-Man to the Man5GlcNAc2-PP-dolichol N-glycosylation intermediate formed on the cytosolic side of the endoplasmic reticulum. Journal of Biological Chemistry, 2001,276(24):21828-21840.
doi: 10.1074/jbc.M010896200
[12] Absmanner B, Schmeiser V, Kämpf M , et al. Biochemical characterization, membrane association and identification of amino acids essential for the function of Alg11 from Saccharomyces cerevisiae, an alpha1,2-mannosyltransferase catalysing two sequential glycosylation steps in the formation of the lipid-linked core oligosaccharide. Biochemical Journal, 2010,426(2):205-217.
doi: 10.1042/BJ20091121
[13] Flitsch S L, Pinches H L, Taylor J P , et al. Chemo-enzymatic synthesis of a lipid-linked core trisaccharide of N-linked glycoproteins. Cheminform, 1992,23(48):2087-2093.
[14] Wilson I B, Taylor J P, Webberley M C , et al. A novel mono-branched lipid phosphate acts as a substrate for dolichyl phosphate mannose synthetase. Biochemical Journal, 1993, 295 (Pt 1)( 1):195-201.
doi: 10.1042/bj2950195 pmid: 8216216
[15] Li S T, Wang N, Xu S , et al. Quantitative study of yeast Alg1 beta-1, 4 mannosyltransferase activity, a key enzyme involved in protein N-glycosylation. Biochimica et biophysica acta, 2016,1861(1):2934-2941.
doi: 10.1016/j.bbagen.2016.09.023 pmid: 27670784
[16] Li S T, Wang N, Xu X X , et al. Alternative routes for synthesis of N-linked glycans by Alg2 mannosyltransferase. Faseb Journal Official Publication of the Federation of American Societies for Experimental Biology, 2017: fj.201701267R.
doi: 10.1096/fj.201701267R pmid: 29273674
[1] 林艳梅,罗湘,李瑞杰,秦秀林,冯家勋. 纤维二糖水解酶N-糖基化对其在草酸青霉中的分泌和酶活影响*[J]. 中国生物工程杂志, 2021, 41(4): 18-29.
[2] 赵峰, 张宜俊, 冉艳红, 王兴勇, 叶倩君, 李弘剑. rhIL-12二硫键、N-糖基化位点及C端氨基酸序列分析[J]. 中国生物工程杂志, 2014, 34(5): 39-53.
[3] 谢春芳, 黎玉凤, 刘大岭, 姚冬生. 利用N-糖基化修饰对β-甘露聚糖酶Man47的稳定性改造[J]. 中国生物工程杂志, 2013, 33(12): 79-85.
[4] 殷亮 杨文竹 王新宇 周蕴芝 姚斌 陈茹梅 范云六. 黑曲霉Aspergillus niger 963植酸酶基因phyA2 N-糖基化突变体的构建与表达分析[J]. 中国生物工程杂志, 2010, 30(06): 54-59.
[5] 张姝 王敏 韩梅琳 马荣才 陈强 高俊莲.
基因重组大肠杆菌表达HrpNEcc蛋白的发酵条件及诱导条件优化
[J]. 中国生物工程杂志, 2009, 29(10): 44-49.