Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (4): 46-53    DOI: 10.13523/j.cb.20180407
研究报告     
信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究
王男,金吕华,张玲,林荣,杨海麟()
江南大学生物发酵与分离实验室 无锡 214122
The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis
Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG()
Jiangnan University, Laboratory of Biological Fermentation and Separation, Wuxi 214122, China
 全文: PDF(937 KB)   HTML
摘要:

根据信号肽N端电荷数,选择Sec及Tat两种途径的信号肽构建枯草芽孢杆菌穿梭质粒,首次实现Bacillus cereus源亮氨酸脱氢酶基因在Bacillus subtilis中的分泌表达。Tat途径信号肽PhoD促进蛋白质分泌的效果最好,胞外酶活力达20.25U/ml,为不添加信号肽的2.2倍,信号肽N端较多的电荷数,可能有利于多聚体蛋白的分泌。对表达产物进行纯化和酶学性质测定。结果表明,纯酶比酶活为13U/mg;L-Leucine为底物时酶的Km为6.17mmol/L,Vmax为14.49μmol/(L·min);底物特异性研究发现,酶与天然底物L-Leucine的亲和性最好,对一些脂肪族氨基酸也有活性,对芳香族氨基酸L-Phenylalanine无活性;酶的最适pH为10.5~12.0,pH稳定范围为5.0~11.0;最适反应温度为55℃;圆二色谱变温扫描酶二级结构变化,α螺旋含量随温度升高逐渐降低;差示扫描微量热技术(DSC)测定酶的解折叠温度(Tm值)为64.13℃,表明该酶具有较好耐热性。

关键词: 信号肽亮氨酸脱氢酶枯草芽孢杆菌酶学性质    
Abstract:

According to the different N-terminal positive charges, Sec and Tat passway signal peptides were selected to construct the shuttle plasmid with pMA5, which was the first time that the leucine dehydrogenase gene from Bacillus cereus was efficiently secreted in Bacillus sutilis. The results showed that PhoD signal peptide had the highest exogenous activity, reaching 20.25U/ml, which was 2.2 times higher than that without signal peptide. The enzymatic properties of the purified leucine dehydrogenase were investigated. The purified enzyme expression level was 13U/mg; the Michaelis constants Km and Vmax were 6.17mmol/L and 14.49μmol/(L·min) for L-Leucine, separately. The enzyme had the best affinity with the natural substrate L-Leucine, and showed activity toward some the aliphatic amino acids; no activity was observed for the Aromatic amino acids L-Phenylalanine; the optimum pH was 10.5-12.0 and the stability was maintained at pH 5.0-11.0; the optimum reaction temperaturewas 55℃, The changed of the secondary structure at different temperatures by circular dichroism proved that the α-helical t α-helix content gradually decreased with increasing temperature; DSC measured Tm value of 64.13℃,indicating that the enzyme had high thermal stability.

Key words: Signal peptides    Leucine dehydrogenase    Bacillus subtilis    Enzymatic properties
收稿日期: 2017-11-23 出版日期: 2018-05-08
ZTFLH:  Q816  
基金资助: * 江苏省产学研资助项目(BY2016022-40)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王男
金吕华
张玲
林荣
杨海麟

引用本文:

王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.

Nan WANG,Lv-hua JIN,Ling ZHANG,Rong LIN,Hai-lin YANG. The Effect of Signal Peptides on the Expression of Leucine Dehydrogenase and Enzymatic Properties in Bacillus subtilis. China Biotechnology, 2018, 38(4): 46-53.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180407        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I4/46

Name Sequence
F1 CGCGGATCCATGACCCTGGAGATCTCCGAAT
R1 CGACGCGTTTAATGATGATGATGATGATGACGACGGCTAATGATATCGTGACCG
LipA-F GGGAATTCCATATGAAATTTGTAAAAAGAAGGATC
LipA-R CGCGGATCCGGCTTTTGCTGACGGCTG
SacB-F GGGAATTCCATATGAACATCAAAAAGTTTGCAAAAC
SacB-R CGCGGATCCCGCAAACGCTTGAGTTGCGCCT
AmyQ-F GGGAATTCCATATGATTCAAAAACGAAAGCGGACAG
AmyQ-R CGCGGATCCTACGGCTGATGTTTTTGTAATC
LipB-F GGGAATTCCATATGGTGAAAAAAGTACTTATGGCAT
LipB-R CGCGGATCCAGCTTTTGCGCCAGACGGCGGAG
NprE-F GGGAATTCCATATGGGTTTAGGTAAGAAAT
NprE-R CGCGGATCCACCTTCAGCAGCCTGAAC
PhoD-F GGGAATTCCATATGGCATACGACAGTCGTTTTG
PhoD-R CGCGGATCCGGCCCCAACCGACTGGGCAATC
YwbN-F GGGAATTCCATATGAGCGATGAACAAAAAAAGCC
YwbN-R CGCGGATCCCGCAACGGCTGCCCCCGCCAT
表1  引物序列表
图1  重组质粒pMA5-leudh的PCR (a)与双酶切(b)验证
图2  重组菌SDS-PAGE分析
图3  信号肽构建示意图
SP分泌途径 SP N端电荷数 胞外活性
(U/ml)
Sec AmyQ 4 16.80
SacB 3 14.09
LipB 2 0.23
NprE 2 0.13
Tat PhoD 6 20.25
YwbN 5 1.91
LipA 4 0.78
表2  不同信号肽引导的LeuDH活性比较
图4  不同信号肽介导的LeuDH发酵上清SDS-PAGE分析
图5  重组亮氨酸脱氢酶纯化UV峰图(a)及SDS-PAGE鉴定(b)
图6  LeuDH对底物L-Leucine的动力学曲线
底物 结构 相对酶活(%)
L-Leucine 100
L-Isoleucine 89
L-Valine 76
L-Norvaline 52
L- Alanine 5
L-Methionine 3
L- Phenylalanine 0
表3  LeuDH氧化反应底物特异性
图7  LeuDH最适pH(a)及pH稳定性(b)
图8  LeuDH最适温度(a)及温度稳定性(b)
温度 α螺旋
(%)
β折叠
(%)
转角
(%)
无规卷曲
(%)
25 82.1 1.1 7.6 9.2
45 76.5 0.9 7.2 15.4
55 75.9 0.8 6.9 16.4
65 17.4 23.5 18.6 40.5
85 11.4 8.0 6.7 73.9
表4  不同温度下LeuDH二级结构分析
图9  不同温度下LeuDH圆二色谱分析
图10  重组LeuDH Tm值
[1] Katoh T, Ngata S, Ozawa A , et al. Purification and characterization of leucine dehydrogenase from an alkalphilic halophile, Natronobacterium magadii MS-3. Jourmal of Molecular Catalysis B: Enzymatic, 2003,23(2-6):231-238.
doi: 10.1016/S1381-1177(03)00085-7
[2] Jing L, Jiang P, Jie Z , et al. Stereoselective synthesis of L-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum. Jourmal of Molecular Catalysis B: Enzymatic, 2014,105:11-17.
doi: 10.1016/j.molcatb.2014.03.010
[3] 李圃, 吴鸿君, 王贤文 , 等. 脲酶-亮氨酸脱氢酶偶联法测定尿素的方法学评价. 四川医学, 2005,26(11):1234-1235.
doi: 10.3969/j.issn.1004-0501.2005.11.024
Li P, Wu J R, Wang X W , et al. Methodological evaluation of urease-leucine dehydrogenase coupling assay for urea. Sichuan Medical Journal, 2005,26(11):1234-1235.
doi: 10.3969/j.issn.1004-0501.2005.11.024
[4] Shizuo T, Toshihisa O, Katsuyuki T , et al. Spectrophotometric end point Method for assaying serum aminopeptidase. Agricultural and Biological Chemistry, 1983,47(4):8 93-895.
doi: 10.1080/00021369.1983.10865742
[5] Tanja S, Achim R, Maria-Regina K , et al. Cloning, sequencing and overexpression of the leucine dehydrogenase gene from Bacillus cereus. Journal of Biotechnology, 1997,54(1):77-80.
doi: 10.1016/S0168-1656(97)01670-2 pmid: 9188201
[6] 陈宝珍, 李红梅, 段琳琳 . 蜡样芽胞杆菌亮氨酸脱氢酶基因在大肠杆菌中的表达及重组酶性质. 工业微生物, 2015,45(4):39-45.
doi: 10.3969/j.issn.1001-6678.2015.04.007
Chen B Z, Li H M, Duan L L . Characterization and expression of leucine dehydrogenase from Bacillus cereus in E.coli. Industrial Microbiology, 2015,45(4):39-45.
doi: 10.3969/j.issn.1001-6678.2015.04.007
[7] Reina K, Shinji N, Haruo M , et al. Cloning and sequencing of the leucine dehydrogenase gene from Bacillus sphaericus IFO 3525 and importance of the C-terminal region for the enzyme activity. Molecular Catalysis B: Enzymatic, 2003,23(2-6):239-247.
doi: 10.1016/S1381-1177(03)00086-9
[8] Colin R H, Rocky C . Bacillus protein secretion: an unfolding srory. Cell, 2007,16(2):73-79.
[9] Sagiya Y, Yamagata H, Udak S . Direct high-level secretion into the culture medium of tuna growth hormone in biologically active form by Bacillus brevis. Appl Microbiol Biotechnol, 1994,42(2):358-363.
[10] Gabriela F, Xavier S, Joel O , et al. Production of a fully functional, permuted single-chain penicillin G acylase. Protein Science, 2004,13(6):1677-1683.
doi: 10.1110/ps.03436604 pmid: 15133167
[11] 夏雨 . 枯草芽孢杆菌食品级表达系统的构建和分泌表达研究. 无锡: 江南大学, 2007.
doi: 10.7666/d.y1195843
Xia Y . Construction of food-grade expression systems and study of protein secretion in Bacillus subtilis. Wuxi: Jiangnan University, 2007.
doi: 10.7666/d.y1195843
[12] Bradford M B . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72(1):248-254.
doi: 10.1016/0003-2697(76)90527-3
[13] Tjalsma H, Bolhuis A, Jongbloed J . Signal peptide-dependent protein transports in Bacillus subtilis: a genome-based survey of the secretome. Microbiology and Molecular Biology Reviews, 2000,64(3):515-547.
doi: 10.1128/MMBR.64.3.515-547.2000 pmid: 10974125
[14] Spence E, Sarcina M, Ray N , et al. Membrance-specific targeting of green fluorescent protein by the Tat pathway in the Cyanobacterium synechocystis PCC6803. Molecular Microbiology, 2003,48(6):1481-1489.
doi: 10.1046/j.1365-2958.2003.03519.x pmid: 12791132
[15] Li H M, Zhu D M, Brooke A , et al. Cloning, prorein sequence clarification, and substrate specificity of a leucine dehyrogenase from Bacillus sphaeericus ATCC4525. Appl Biochem Biotechnol, 2009,158(2):343-351.
doi: 10.1007/s12010-008-8304-2 pmid: 18626578
[16] Tjalsma H, Antelmann H, Jongbloed J , et al. Proteomics of protein secretion by Bacillus subtilis:Sepatating the “Secrets” of the secretome. Microbiology and Molecular Biology Reviews, 2004,68(2):207-233.
doi: 10.1128/MMBR.68.2.207-233.2004 pmid: 419921
[1] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[2] 梁爱玲,刘文婷,武攀,李倩,高健,张洁,刘卫东,贾士儒,郑迎迎. 来源于Exophiala aquamarina的新型玉米赤霉烯酮水解酶的性质及底物结合中心关键氨基酸的功能研究*[J]. 中国生物工程杂志, 2021, 41(10): 19-27.
[3] 朱衡,张继福,张云,胡云峰. 环氧交联剂和氨基载体固定化海洋假丝酵母脂肪酶*[J]. 中国生物工程杂志, 2020, 40(5): 57-68.
[4] 马翠萍,刘朵朵,潘炳菊,申会涛,宋亚囝. 来源于嗜碱芽孢杆菌N16-5甘露聚糖利用基因簇的乙酰酯酶AesA的克隆及性质分析*[J]. 中国生物工程杂志, 2020, 40(3): 65-71.
[5] 朱衡,张继福,张云,孙爱君,胡云峰. 聚乙二醇二缩水甘油醚交联氨基载体LX-1000EA固定化脂肪酶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 124-132.
[6] 王菲,胡春辉,于浩. 6-羟基烟酸3-单加氧酶(NicC)催化反应机理研究 *[J]. 中国生物工程杂志, 2019, 39(7): 15-23.
[7] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[8] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[9] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[10] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[11] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[12] 王彤,徐岩,喻晓蔚. 毕赤酵母Kex2蛋白酶的同源表达及酶学性质 *[J]. 中国生物工程杂志, 2019, 39(1): 38-45.
[13] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[14] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[15] 郭倩倩,高登科,程晓涛,路福平,田之仓优,秦慧民. 胆固醇氧化酶PsCO4异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2018, 38(6): 34-42.