Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2018, Vol. 38 Issue (3): 70-75    DOI: 10.13523/j.cb.20180309
综述     
脂肪干细胞对神经创伤修复的研究进展*
刘亚楠1,路莉1*(),王学习2,吴勇杰1,刘霞2
1 兰州大学药理研究所 兰州 730000
2 兰州大学中西医结合研究所 甘肃省新药临床前研究重点实验室 兰州 730000
Research Pogress of Adipose Derived Stem Cells on Nerve Injury Repair
Ya-nan LIU1,Li LU1*(),Xue-xi WANG2,Yong-jie WU1,Xia LIU2
1 Department of Pharmacology,School of Medicine, Lanzhou University, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou 730000, China
2 Institute of Integrative Traditional and Western Medicine,School of Medicine, Lanzhou University, Lanzhou 730000, China
 全文: PDF(450 KB)   HTML
摘要:

在医学上,神经系统对神经损伤的自我修复能力往往有限。因此,探索有效修复损伤神经的方法已经成为近年来的研究热点。研究发现脂肪干细胞对各类损伤神经都有一定的修复作用,可作为修复神经损伤的种子细胞。脂肪干细胞不仅具有干细胞的特性而且还具有自身的优点;首先它属于成体细胞,来源于中胚层,具有多种分化的潜能;其次免疫原性较低,易于取材;另外脂肪干细胞移植后的风险较低,因此被认为是修复神经损伤的优秀种子细胞。就脂肪干细胞的特性及脂肪干细胞在神经创伤修复方面的研究进展和存在的问题进行综述。

关键词: 脂肪干细胞生长因子神经损伤修复    
Abstract:

In medicine, the ability of the nervous system to repair nerve damage is often limited. In recent years, it has been found that adipose derived stem cells (ADSCs) have repair effects on various types of nerve injury and can be the seed cells for nerve injury repair. Not only being as stem cells, ADSCs also have some exclusive advantages. ADSCs belong to adult cells, which derived from the mesoderm, with multi-lineage differentiation potential, low immunogenicity, easy to gain, low risk after transplantation, thus make them become excellent immunogenicity, easy to gain, low risk after transplantation, thus make them become excellent seed cells for the nerve repair.The characteristics of adipose derived stem cells and their research progress and existing problems on nerve injury repair were reviewed.

Key words: Adipose-derived stem cells    Growth factor    Nerve injury repair
收稿日期: 2017-08-17 出版日期: 2018-04-04
ZTFLH:  Q813  
基金资助: 兰州大学中央高校基本科研业务费专项资金(lzujbky-2016-65);兰州市城关区科技计划(2016-7-8);中央高校基本科研业务费专项资金(lzujbky-2014-214)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘亚楠
路莉
王学习
吴勇杰
刘霞

引用本文:

刘亚楠,路莉,王学习,吴勇杰,刘霞. 脂肪干细胞对神经创伤修复的研究进展*[J]. 中国生物工程杂志, 2018, 38(3): 70-75.

Ya-nan LIU,Li LU,Xue-xi WANG,Yong-jie WU,Xia LIU. Research Pogress of Adipose Derived Stem Cells on Nerve Injury Repair. China Biotechnology, 2018, 38(3): 70-75.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20180309        https://manu60.magtech.com.cn/biotech/CN/Y2018/V38/I3/70

[1] Zuk P A, Zhu M, Mizuno H, et al.Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 2001, 7(2): 211-228.
doi: 10.1089/107632701300062859
[2] Prockop D J.Stem cell research has only just begun. Science, 2001, 293(5528): 211-212.
[3] Rozila I, Azari P, Munirah S, et al.Differential osteogenic potential of human adipose‐derived stem cells co‐cultured with human osteoblasts on polymeric microfiber scaffolds. Journal of Biomedical Materials Research Part A, 2016, 104(2): 377-387.
doi: 10.1002/jbm.a.35573 pmid: 26414782
[4] Zhao Y, Jiang H, Liu X, et al.Neurogenic differentiation from adipose-derived stem cells and application for autologous transplantation in spinal cord injury. Cell and Tissue Banking, 2015, 16(3): 335-342.
doi: 10.1007/s10561-014-9476-3 pmid: 25636737
[5] Alipour F, Parham A, Mehrjerdi H K, et al. Equine adipose-derived mesenchymal stem cells: phenotype and growth characteristics, gene expression profile and differentiation potentials. Cell J (Yakhteh), 2015, 16(4):456-465.
doi: 10.22074%2Fcellj.2015.491 pmid: 4297484
[6] Faroni A, Terenghi G, Reid A J.Adipose-derived stem cells and nerve regeneration: promises and pitfalls. Int Rev Neurobiol, 2013, 108(1): 121-136.
doi: 10.1016/B978-0-12-410499-0.00005-8
[7] Summa P G, Kalbermatten D F, Raffoul W, et al.Extracellular matrix molecules enhance the neurotrophic effect of Schwann cell-like differentiated adipose-derived stem cells and increase cell survival under stress conditions. Tissue Engineering Part A, 2012, 19(3-4): 368-379.
doi: 10.1089/ten.tea.2012.0124 pmid: 22897220
[8] Han I H, Sun F, Choi Y J, et al.Cultures of Schwann-like cells differentiated from adipose‐derived stem cells on PDMS/MWNT sheets as a scaffold for peripheral nerve regeneration. Journal of Biomedical Materials Research Part A, 2015, 103(11): 3642-3648.
doi: 10.1002/jbm.a.35488 pmid: 25903927
[9] Salzer J L.Schwann cell myelination. Cold Spring Harbor Perspectives in Biology, 2015, 7(8): a020529.
doi: 10.1101/cshperspect.a020529
[10] Grove M, Brophy P J.FAK is required for Schwann cell spreading on immature basal lamina to coordinate the radial sorting of peripheral axons with myelination. Journal of Neuroscience, 2014, 34(40): 13422-13434.
doi: 10.1523/JNEUROSCI.1764-14.2014 pmid: 25274820
[11] Glenn T D, Talbot W S.Signals regulating myelination in peripheral nerves and the Schwann cell response to injury. Current Opinion in Neurobiology, 2013, 23(6): 1041-1048.
doi: 10.1016/j.conb.2013.06.010 pmid: 3830599
[12] Susuki K, Raphael A R, Ogawa Y, et al.Schwann cell spectrins modulate peripheral nerve myelination. Proceedings of the National Academy of Sciences, 2011, 108(19): 8009-8014.
doi: 10.1073/pnas.1019600108 pmid: 21518878
[13] Zack-Williams S D L, Butler P E, Kalaskar D M. Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World Journal of Stem Cells, 2015, 7(1): 51.
doi: 10.4252/wjsc.v7.i1.51 pmid: 25621105
[14] Marconi S, Castiglione G, Turano E, et al.Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush. Tissue Engineering Part A, 2012, 18(11-12): 1264-1272.
doi: 10.1089/ten.TEA.2011.0491 pmid: 22332955
[15] Carriel V, Garrido-Gómez J, Hernández-Cortés P, et al.Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. Journal of Neural Engineering, 2013, 10(2): 026022.
doi: 10.1088/1741-2560/10/2/026022 pmid: 23528562
[16] Suganuma S, Tada K, Hayashi K, et al.Uncultured adipose-derived regenerative cells promote peripheral nerve regeneration. Journal of Orthopaedic Science, 2013, 18(1): 145-151.
doi: 10.1007/s00776-012-0306-9 pmid: 22948962
[17] Orbay H, Uysal A C, Hyakusoku H, et al.Differentiated and undifferentiated adipose-derived stem cells improve function in rats with peripheral nerve gaps. Journal of Plastic, Reconstructive & Aesthetic Surgery, 2012, 65(5): 657-664.
doi: 10.1016/j.bjps.2011.11.035 pmid: 22137687
[18] Reid A J, Sun M, Wiberg M, et al.Nerve repair with adipose-derived stem cells protects dorsal root ganglia neurons from apoptosis. Neuroscience, 2011, 199(10): 515-522.
doi: 10.1016/j.neuroscience.2011.09.064 pmid: 22020320
[19] Xu Y, Zhang Z, Chen X, et al.A silk fibroin/collagen nerve scaffold seeded with a co-culture of Schwann cells and adipose-derived stem cells for sciatic nerve regeneration. PLoS One, 2016, 11(1): e0147184.
doi: 10.1371/journal.pone.0147184 pmid: 4723261
[20] Kim D Y, Choi Y S, Kim S E, et al.In vivo effects of adipose-derived stem cells in inducing neuronal regeneration in Sprague-Dawley rats undergoing nerve defect bridged with polycaprolactone nanotubes. Journal of Korean Medical Science, 2014, 29(Suppl 3): S183-S192.
doi: 10.3346/jkms.2014.29.S3.S183 pmid: 4248004
[21] Hsueh Y Y, Chang Y J, Huang T C, et al.Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells. Biomaterials, 2014, 35(7): 2234-2244.
doi: 10.1016/j.biomaterials.2013.11.081 pmid: 24360575
[22] He X, Ao Q, Wei Y, et al.Transplantation of miRNA‐34a overexpressing adipose‐derived stem cell enhances rat nerve regeneration. Wound Repair and Regeneration, 2016, 24(3): 542-550.
doi: 10.1111/wrr.12427 pmid: 26899299
[23] 李阳. 人脂肪间充质干细胞向雪旺细胞的诱导分化及对外周面神经损伤修复的实验研究. 北京: 北京协和医学院, 2013.
Li Y, Human Adipose-Derived Mesenchymal Stem Cells Differentiate into Functional Schwann Cells and Promote Peripheral Facial Nerve Regeneration Beijing: Peking Union Medical College, 2013.
[24] Roszek K, Makowska N, Czarnecka J, et al.Canine adipose-derived stem cells: purinergic characterization and neurogenic potential for therapeutic applications. Journal of Cellular Biochemistry, 2017, 118(1): 58-65.
doi: 10.1002/jcb.25610 pmid: 27225588
[25] Chen X, Yang Q, Zheng T, et al.Neurotrophic effect of adipose tissue-derived stem cells on erectile function recovery by pigment epithelium-derived factor secretion in a rat model of cavernous nerve injury. Stem Cells International, 2015,2016(2):1-12.
doi: 10.1155/2016/5161248 pmid: 26783403
[26] Jeon S H, Shrestha K R, Kim R Y, et al.Combination therapy using human adipose-derived stem cells on the cavernous nerve and low-energy shockwaves on the corpus cavernosum in a rat model of post-prostatectomy erectile dysfunction. Urology, 2016, 15(3):e880.
doi: 10.1016/j.juro.2016.02.2314
[27] Liu S, Sandner B, Schackel T, et al.Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury. Acta Biomaterialia, 2017, 60(7): 167-180.
doi: 10.1016/j.actbio.2017.07.024 pmid: 28735026
[28] 朱俊卿, 洪军, 崔建忠, 等. 脂肪间充质干细胞治疗外伤性脑损伤. 中国组织工程研究, 2017, 21(1): 71-76.
doi: 10.3969/j.issn.2095-4344.2017.01.013
Zhu J Q, Hong J, Cui J Z, et al.Adipose mesenchymal stem cells for treatment of traumatic brain injury.Chinese Journal of Tissue Engineering Research, 2017, 21(1): 71-76.
doi: 10.3969/j.issn.2095-4344.2017.01.013
[29] Li X, Zheng W, Bai H, et al.Intravenous administration of adipose tissue-derived stem cells enhances nerve healing and promotes BDNF expression via the TrkB signaling in a rat stroke model. Neuropsychiatric Disease and Treatment, 2016, 12(1): 1287-1293.
doi: 10.2147/NDT.S104917 pmid: 27330296
[30] Mastro-Martínez I, Pérez-Suárez E, Melen G, et al.Effects of local administration of allogenic adipose tissue-derived mesenchymal stem cells on functional recovery in experimental traumatic brain injury. Brain Injury, 2015, 29(12): 1497-1510.
doi: 10.3109/02699052.2015.1053525 pmid: 26244701
[31] Ban J J, Yang S, Im W, et al.Neurogenic effects of cell-free extracts of adipose stem cells. PLoS One, 2016, 11(2): e0148691.
doi: 10.1371/journal.pone.0148691 pmid: 4747593
[32] 陈云飞, 马百涛, 薛春玲, 等. 人脂肪间充质干细胞来源的外排体促进大鼠创伤性脑损伤后神经功能恢复. 基础医学与临床, 2017, 37(6): 802-807.
Chen Y F, Ma B T, Xue C L, et al.Exosome extracted from hAMSCs promotes neurological function recovery after traumatic brain injury in rats.Basic & Clinical Medicine, 2017, 37(6): 802-807.
[33] Schwerk A, Altschüler J, Roch M, et al.Adipose-derived human mesenchymal stem cells induce long-term neurogenic and anti-inflammatory effects and improve cognitive but not motor performance in a rat model of Parkinson’s disease. Regenerative Medicine, 2015, 10(4): 431-446.
doi: 10.2217/rme.15.17 pmid: 26022763
[34] Jahromi M, Razavi S, Amirpour N, et al.Paroxetine can enhance neurogenesis during neurogenic differentiation of human adipose-derived stem cells. Avicenna Journal of Medical Biotechnology, 2016, 8(4): 152.
[35] . Yang Q, Du X, Fang Z, et al.Effect of calcitonin gene-related peptide on the neurogenesis of rat adipose-derived stem cells in vitro. PLoS One, 2014, 9(1): e86334.
doi: 10.1371/journal.pone.0086334 pmid: 3897681
[36] 张爽,郑冬,马月辉.脂肪干细胞在再生医学中的应用.生物技术进展, 2015, 5(4): 291-296.
Zhang S, Zheng D, Ma Y H.The application of adipose stem cells in regenerative medicine. Current Biotechnology, 2015,5(4):291-296.
[37] 赵勇. 脂肪干细胞生物学特性及参与脊髓损伤修复研究. 广州:南方医科大学, 2015.
doi: 10.7666/d.Y2911258
Zhao Y, Bio-characteristics Research of Adipose-derived Mesenchymal Stem Cell and Application in Spinal Cord Injury. Guangzhou: Southern Medical University, 2015.
doi: 10.7666/d.Y2911258
[38] Kang J W, Kang K S, Koo H C, et al .Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cell.Stem Cells and Development,2008,17(4): 681-693.
doi: 10.1016/j.compstruct.2004.07.015 pmid: 18717642
[39] Widgerow A D, Salibian A A, Lalezari S, et al.Neuromodulatory nerve regeneration: adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. Neurosci Res, 2013, 91(12):1517-1524.
doi: 10.1002/jnr.23284 pmid: 24105674
[40] Lopatina T, Kalinina N, Karagyaur M, et al Adipose-derived stem cells stimulate regeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healing and axon growth de novo. PLoS One, 2011, 6(3):e17899.
doi: 10.1371/journal.pone.0017899 pmid: 3056777
[41] Tomita K, Madura T, Sakai Y, et al.Glial differentiation of human adipose-derived stem cells: implications for cell-based transplantation therapy. Neuroscience, 2013, 236(12): 55-65.
doi: 10.1016/j.neuroscience.2012.12.066 pmid: 23370324
[42] Kingham P J, Kolar M K, Novikova L N, et al.Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells and Development, 2013, 23(7): 741-754.
doi: 10.1089/scd.2013.0396 pmid: 24124760
[43] Chan J R, Cosgaya J M, Wu Y J, et al.Neurotrophins are key mediators of the myelination program in the peripheral nervous system. Proceedings of the National Academy of Sciences, 2001, 98(25): 14661-14668.
doi: 10.1073/pnas.251543398 pmid: 11717413
[44] J Salgado A, L Reis R, Sousa N, et al. Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine. Current Stem Cell Research & Therapy, 2010, 5(2): 103-110.
doi: 10.2174/157488810791268564 pmid: 19941460
[45] Kolar M K, Kingham P J.Regenerative effects of adipose-tissue-derived stem cells for treatment of peripheral nerve injuries. Biochem Soc Trans, 2014,42(3):697-701.
doi: 10.1042/BST20140004 pmid: 24849239
[1] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[2] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[3] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[4] 李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.
[5] 宋奕,张翠云,李奕,张素素,潘舜,陶云云,许璐摇,何华成,吴疆. 利用静电纺丝技术制备聚己内酯-胶原复合包载碱性成纤维细胞生长因子手术缝纫线及其缓释性能的研究 *[J]. 中国生物工程杂志, 2019, 39(1): 55-62.
[6] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[7] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[8] 郑婕, 姜潮, 李校堃, 田海山. 成纤维细胞生长因子6(FGF6(的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 110-114.
[9] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[10] 龚卫月, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子与骨相关疾病的研究进展[J]. 中国生物工程杂志, 2016, 36(8): 99-104.
[11] 邓春平, 杨波, 梅雄, 郑赞顺, 曲伟. 重组碱性成纤维细胞生长因子游离巯基的测定分析[J]. 中国生物工程杂志, 2016, 36(6): 76-80.
[12] 王小花, 李玉婷, 刘亚威, 桂金秋, 周晓杭, 袁晓环, 初彦辉, 刘海峰. 突变型人HGF(tvNK1)对CCl4诱导的大鼠肝纤维化的影响[J]. 中国生物工程杂志, 2016, 36(6): 18-23.
[13] 吴美玉, 王海军, 程继亮, 翟凤, 李校堃, 姜潮. 成纤维细胞生长因子17研究进展[J]. 中国生物工程杂志, 2016, 36(3): 82-86.
[14] 李锐, 蔡平讨, 叶丽冰, 张宏宇, 肖健. [PEAD:肝素:NGF]生物材料促进大鼠坐骨神经损伤恢复[J]. 中国生物工程杂志, 2016, 36(2): 68-72.
[15] 赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.