Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (6): 93-96    DOI: 10.13523/j.cb.20170614
综述     
微滴数字PCR技术应用进展
赵治国, 崔强, 赵林立, 王海艳, 李刚, 刘来俊, 敖威华, 马彩霞
内蒙古出入境检验检疫局检验检疫技术中心 呼和浩特 010020
Application Progress of the Technology of Droplet Digital PCR
ZHAO Zhi-guo, CUI Qiang, ZHAO Lin-li, WANG Hai-yan, LI Gang, LIU Lai-jun, AO Wei-hua, MA Cai-xia
The Inspection and Quarantine Technology Center of Inner Mongolia Entry-exit Inspection and Quarantine Bureau, Hohhot 010020, China
 全文: PDF(416 KB)   HTML
摘要: 微滴数字 PCR 技术是数字PCR技术的一种,是近年来分子生物学领域的新型革命性技术,其特点是高度灵敏、绝对定量及高效方便等。目前,该技术在微生物检测、转基因检测、疾病检测以及质检领域的研究和应用中已凸显优势,随着微滴数字 PCR 仪的普及,该技术必将广泛应用于生命科学的各个领域。
关键词: 微滴数字PCR应用技术绝对定量    
Abstract: Droplet digital PCR is a type of digital PCR,which was a new revolutionary technology of Molecular biology in recent years, its characteristic is highly sensitive, absolute quantitative, efficient, convenient, and so on. At present, the technology have been applied in microbiological detection, genetically modified detection, disease detection and quality inspection area, and its advantage was very obvious. Along with the popularization of droplet digital PCR system, the technology will be widely applied in various fields of life science.
Key words: Droplet digital PCR    Application    Absolute quantitative
收稿日期: 2016-12-28 出版日期: 2017-06-25
ZTFLH:  Q819  
基金资助: 国家质检总局科技计划资助项目(2016IK165)
通讯作者: 赵治国     E-mail: zhaozhiguo303@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵治国
赵林立
刘来俊
敖威华
马彩霞
王海艳
崔强
李刚

引用本文:

赵治国, 崔强, 赵林立, 王海艳, 李刚, 刘来俊, 敖威华, 马彩霞. 微滴数字PCR技术应用进展[J]. 中国生物工程杂志, 2017, 37(6): 93-96.

ZHAO Zhi-guo, CUI Qiang, ZHAO Lin-li, WANG Hai-yan, LI Gang, LIU Lai-jun, AO Wei-hua, MA Cai-xia. Application Progress of the Technology of Droplet Digital PCR. China Biotechnology, 2017, 37(6): 93-96.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170614        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I6/93

[1] Saiki R K, Scharf S, Faloona F, et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia.Science,1985,230(4732):1350-1354.
[2] Higuchi R, Dollinger G, Walsh P S, et a1. Simultaneous amplification and detection of specific DNA-sequences. Bio Technology,1992,10(4):413-417.
[3] Morley A A,Sykes P J, Neoh S H, et al. Quantitation of targets for PCR by use of limiting dilution. BioTechniques, 1992,13(3):444-449.
[4] Bert V, Kenneth W K. Proceedings of the National Academy of Didital PCR. Sciences, 1999, 96(8):9236-9241.
[5] Morrison T, Hurley J, Garcia J, et al. Nanoliter high throughput quantitative PCR. Nucleic Acids Res, 2006, 34(18):e123.
[6] Ottesen E A, Hong J W, Quake S R, et al. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria.Science,2006,314(5804):1464-1467.
[7] Sanders R, Huggett J F, Bushell C A, et al. Evaluation of digital PCR for absolute DNA quantification. Analytical Chemistry, 2011,83(17):6474-6484.
[8] 胡瑞丽,杜亚楠,赵凯等. 微滴PCR技术的研究进展. 农村经济与科技,2016,27(14):290- 291. Hu R L, Du Y N, Zhao K, et al. The research progress of droplet PCR technology. Rural Economy and Technology, 2016,27(14):290- 291.
[9] Michael J, Rothrock J R, Kelli L, et al. Quantification of zoonotic bacterial pathogens within commercial poultry processing water samples using droplet digital PCR. Advances in Microbiology, 2013,3(5):403-411.
[10] Zhao H, Kimberly W, Inger K, et al. Specific qPCR assays for the detection of orf virus, pseudocowpox virus and bovine papular stomatitis virus. Journal of Virological Methods, 2013,194(12):229-234.
[11] Nejc R, Dany M, Ion G A, et al. One-step RT-droplet digital PCR:a breakthrough in the quantification of waterborne RNA viruses. Analytical and Bioanalytical Chemistry, 2014,406(3):661-667.
[12] Sophia A, Kevin S, Micah M, et al. Detection of low-concentration host mRNA transcripts in Malawian children at risk for environmental enteropathy. Journal of Pediatric Gastroenterology and Nutrition, 2013,56(1):66-71.
[13] KaShonda K, Angela C, Phillip B, et al. Detection of methicillin-resistant Staphylococcus aureus by a Duplex Droplet Digital Polymerase Chain Reaction. Journal of Clinical microbiology, 2013,51(7):2033-2039.
[14] Tae G K, So Y J, Kyung S C, et al. Comparison of droplet digital PCR and quantitative real-time PCR for examining population dynamics of bacteria in soil. Appl Microbiol Biotechnol, 2014,98(13):1-4.
[15] Dany M, Dejan S, Mojca M, et al. Quantitative analysis of food and feed samples with Droplet Digital PCR. Plos One, 2013,8(5):1-9.
[16] 李浩,杨冬燕,杨永存,等. 运用微滴式数字PCR技术鉴定潲水油的初步研究. 中国保健营养, 2013,5(5):22-23. Li H, Yang D Y, Yang Y C, et al. The preliminary research of pigwash oil determination by droplet digital PCR technology. China's Health Care and Nutrition, 2013,5(5):22-23.
[17] Cai Y C, Li X, Lv R, et al. Quantitative analysis of pork and chicken products by Droplet Digital PCR. BioMed Research International Volume, 2014,2014(8):1-6.
[18] Feuk L, Carson A R, Scherer S W. Structural variation in the human genome. Nature Reviews Genetics, 2006,7(2):85-97.
[19] Benjamin J H, Kevin D N, Donald A M, et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Analytical Chemistry, 2011,83(22):8604-8610.
[20] Boettger L M, Handsaker R E, Zody M C, et al. Structural haplotypes and recent evolution of the human 17q21.31 region. Nat Genet, 2012,44(8):881-885.
[21] Deborah P, Hannah G., Carrie Z, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. New England Journal of Medicine, 2013, 369(19):1828-1835.
[22] Sedlak R H, Cook L, Huang M L, et al. Identification of chromosomally integrated human herpes virus 6 by Droplet Digital PCR. Clinical Chemistry, 2014,60(5):765-772.
[23] Chrissy H R, Anna L, Sandra M G., et al. Development and Evaluation of a next-generation Digital PCR diagnostic assay for ocular Chlamydia trachomatis infections. Journal of Clinical Microbiology, 2013,51(7):2195-2203.
[24] Yan L, Edmund L, Eng L T, et al. Droplet digital PCR as a useful tool for the quantitative detection of enterovirus71. Journal of Virological Methods, 2014, 207(7):200-203.
[25] Giovanna S B, Raya M, Emily C L, et al. Digital droplet PCR (ddPCR) for the precise quantification of human T-lymphotropic virus 1 proviral loads in peripheral blood and cerebrospinal fluid of HAM/TSP patientsand identification of viral mutations. Journal of Neurovirology, 2014,20(4):341-351.
[26] 林彩琴, 姚波. 数字PCR技术进展.化学进展,2010,24(12):2415-2423. Lin C Q, Yao B. Recent advance in digital PCR. Progress in Chemistry, 2010,24(12):2415-2423.
[1] 刘旭霞,杨安珂. 美国SECURE规则评析及其对中国的启示[J]. 中国生物工程杂志, 2021, 41(9): 126-135.
[2] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[3] 王艳梅,寇航,马梅,申玉玉,赵宝顶,路福平,黎明. 利用CRISPR-Cas9技术失活黑曲霉中果胶酶基因及突变株性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 35-44.
[4] 段阳阳,张凤亭,成江,石瑾,杨娟,李海宁. SIRT2抑制对MPP+诱导的帕金森病细胞模型凋亡和线粒体动态平衡的影响*[J]. 中国生物工程杂志, 2021, 41(4): 1-8.
[5] 胡鸢雷,陈彦丞,濮润,姚卫浩,张宏翔. 英国生物技术产业创新创业生态系统的构建与启示[J]. 中国生物工程杂志, 2021, 41(4): 100-105.
[6] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[7] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[8] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[9] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[10] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[11] 肖云喜,张俊河,杨雯雯,程洪伟. 用于疫苗生产的人二倍体细胞研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 74-81.
[12] 吴函蓉,王莹,李苏宁,桑晓冬,范玲. 我国生物技术基地平台建设政策研究[J]. 中国生物工程杂志, 2021, 41(10): 127-131.
[13] 宋以梅,贾秀伟,李树标,高翠娟. 工业微生物解脂耶氏酵母及其应用研究*[J]. 中国生物工程杂志, 2020, 40(9): 77-86.
[14] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[15] 黄昭鸿,黄运红,黄艳梅,龙中儿,山珊. 分型检测致泻性大肠埃希氏菌PCR技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 82-90.