Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (8): 78-83    DOI: 10.13523/j.cb.20170812
综述     
石墨烯及其衍生物在骨科的应用
焦洋, 刘恒, 拉提百克·买买提居马, 曹永平
北京大学第一医院 北京 100034
The Application of Graphene and Derivatives in Orthopedics
JIAO Yang, LIU Heng, Talatibaike·Maimaitijuma, CAO Yong-ping
Department of Orthopedics, Peking University First Hospital, Beijing 100034, China
 全文: PDF(724 KB)   HTML
摘要: 石墨烯及其衍生物具有独特的物理、化学及生物学特性,如具有抗菌性,促进成骨,增加复合材料的耐磨损等,在生物医学及组织工程领域具有极大的应用前景。主要介绍了石墨烯及其衍生物在骨科的应用及研究进展,从而为未来它们在基础及临床研究提供理论依据。
关键词: 骨科衍生物石墨烯材料应用    
Abstract: Graphene and its derivatives have unique physical, chemical and biological properties, such as antibacterial property, promoting osteogenesis, increasing the wear resistance of composite materials, etc. It has broad application prospects in biomedicine and tissue engineering. The application and research progress of graphene and its derivatives in orthopedics were introduced, in order to provide theoretical basis for the future clinical and fundamental research.
Key words: Biomaterial    Graphene    Application    Derivative    Orthopedic
收稿日期: 2017-02-07 出版日期: 2017-08-25
ZTFLH:  Q819  
通讯作者: 曹永平     E-mail: freehorse66@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
焦洋
曹永平
拉提百克·
刘恒
买买提居马

引用本文:

焦洋, 刘恒, 拉提百克·买买提居马, 曹永平. 石墨烯及其衍生物在骨科的应用[J]. 中国生物工程杂志, 2017, 37(8): 78-83.

JIAO Yang, LIU Heng, Talatibaike·Maimaitijuma, CAO Yong-ping. The Application of Graphene and Derivatives in Orthopedics. China Biotechnology, 2017, 37(8): 78-83.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20170812        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I8/78

[1] Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007,6(3):183-191.
[2] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696):666-669.
[3] Liu Z, Robinson J T, Sun X, et al. PEGylated nano graphene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008, 130(33):10876-10877.
[4] Rana V K, Choi M C, Kong J Y, et al. Synthesis and drug-delivery behavior of chitosan-funetionalized graphene oxide hybrid nanosheets. Macromole Mater Eng, 2011, 296(2):131-140.
[5] Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano, 2010, 4(7):4317-4323.
[6] Shi J, Guo J, Bai G, et al. A graphene oxide based fluorescence resonance energy transfer (FRET) biosensor for ultrasensitive detection of botulinum neurotoxin A (BoNT/A) enzymatic activity. Biosens Bioelectron, 2015, 65(3):238-244.
[7] Liu Z, Robinson J T, Sun X, et al. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 2008, 130(33):10876-10877.
[8] Barinov A, Malcioglu B, Fabris S, et al. Initial stages of oxidation on graphitic surfaces:photoemission study and density functional theory calculations. J Phys Chem C, 2009, 113(21):9009-9013.
[9] Hu W, Peng C, Luo W, et al. Graphene -based antibacterial paper. ACS Nano, 2010, 4(7):4317-4323.
[10] Liu S, Zeng T H, Hofmann M, et al. Antibacterial activity of graphite graphite oxide,graphene oxide and reduced graphene oxide:membrane and oxidative stress. ACS Nano, 2011, 5(9):6971-6980.
[11] Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nano, 2013, 8(8):594-601.
[12] Kumar S, Raj S, Kolanthai E, et al. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications. ACS Appl Mater, 2015, 7(5):3237-3252.
[13] Keun O P, Jong H L, Ji H P, et al. Graphene oxide-coated guided bone regeneration membranes with enhanced osteogenesis:Spectroscopic analysis and animal study. Applied Spectroscopy Reviews, 2016, 51(7-9):540-551.
[14] Elkhenany H, Amelse L, Lafont A, et al. Graphene supports in vitro proliferation and osteogenic differentiation of goat adult mesenchymal stem cells:potential for bone tissue engineering. J Appl Toxicol, 2015, 5(4):367-374.
[15] Aryaei A, Ahalapitiya H J, Ambalangodage C J. The effect of graphene substrate on osteoblast cell adhesion and proliferation. J Biomed Mater Res A, 2014, 102(9):3282-3290.
[16] Liu F Z, Fan Z J, Wang J Q. Preparation of graphene and its applications in biomedicine. Materials China, 2015, 34(7-8):589-594.
[17] Liu Z, Robinson J T, Sun X, et a1. PEGylated nano graphene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008, 130(33):10876-10877.
[18] Chen K H, Ling Y Z, Cao C, et al. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery. Materials Science and Engineering, 2016, 69(12):1222-1228.
[19] Zhao W K, Zhang S Y, Yang Q M, et al. Research progres of graphene and derivatives nanocomposite in orthopedics application. Journal of Biomedical Engineering, 2016, 3(33):604-608.
[20] Lee J H, Shin Y C, Lee S M, et al. Enhanced osteogenesis by reduced graphene oxide/hydroxyapatite nanocomposites. Nature Scientific Reports, 2015, 5(12):1-13.
[21] Feng P, Peng S P, Wu P, et al. A nano-sandwich construct built with graphene nanosheets and carbon nanotubes enhances mechanical properties of hydroxyapatite-polyetheretherketone scaffolds. International Journal of Nanomedicine, 2016,11(7):3487-3500.
[22] Brachdel P, Bistolfi A, Bracco P, et al. UHMWPE for arthroplasty:past or future? J Orthop Traumatol, 2009, 10(1):1-8.
[23] Lahiri D, Dua R, Zhang C, et al. Graphene nano-platelet-induced strengthening of ultrahigh molecular weight polyethylene and biocompatibility in vitro. ACS Appl Mater Interfaces, 2012, 4(4):2234-2241.
[24] Chen Y F, Qi Y Y, Tai Z X, et al. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. Eur Polym J, 2012, 48(6):1026-1033.
[25] Goncalves G, Portol S M, Ram Rezsantillan C, et al. Evaluation of the in vitro biocompatibility of PMMA/high-load HA/carbon nanostructures bone cement formulations.J Mater Sci Mater Med,2013,24(12):2787-2796.
[26] Qi Y Y, Tai Z X, Sun D F, et al. Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. J Appl Polym Sci, 2013, 127(3):1885-1894.
[27] Porwal H, Grasso S, Reece M, et al. Review of graphene-ceramic matrix composites.Advances in Applied Ceramics, 2013, 112(8):443-454.
[28] Shuai C J, Gao C D, Feng P, et al. Graphene-reinforced mechanical properties of calcium silicate scafolds by laser sintering. RSC Adv, 2014, 4(25):12782-12788.
[29] Xie Y T, Li H Q, Zhang C, et al. Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomed Mater, 2014, 9(2):025009.
[30] Mehrali M, Moghaddam E, Shirazi S F, et al. Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces, 2014, 6(6):3947-3962.
[31] Tai Z X, Chen Y F, An Y F, et al. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets. Tribol Lett, 2012, 46(1):55-63.
[32] Yan H, Li S, Jia Y, et al. Hyperbranched polysiloxane grafted graphene for improved tribological performance of bismaleimide composites. RSC Adv, 2015, 5(17):12578-12582.
[33] Saravanan S, Chawla A, Vairamani,M, et al. Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 2017, 034(1):1-11.
[34] Wang J K, Xiong G M, Zhu M, et al. Polymer-enriched 3d graphene foams for biomedical applications. ACS Applied Materials & Interfaces, 2015, 7(15):8275-8283.
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 郑婕,吴昊,乔建军,朱宏吉. 革兰氏阳性菌荚膜多糖研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 91-98.
[3] 陈莹,李谦. 特殊酵母工业应用专利发展态势分析[J]. 中国生物工程杂志, 2021, 41(4): 91-99.
[4] 韩雪怡,李一帆,陆玥达,熊国良,喻长远. 具有自噬抑制作用的卟啉金属有机框架的制备及其光动力癌症治疗的研究*[J]. 中国生物工程杂志, 2021, 41(11): 48-54.
[5] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[6] 王震,李霞,元英进. 微生物异源合成咖啡酸及其酯类衍生物研究进展 *[J]. 中国生物工程杂志, 2020, 40(7): 91-99.
[7] 程平,张洋子,马翾,陈旭,朱保庆,许文涛. 刺激响应型DNA水凝胶的性质及其应用 *[J]. 中国生物工程杂志, 2020, 40(3): 132-143.
[8] 朱士强,陆祥安,于春涵,代益帆,邱悦,陈集双. 热氧老化对麦秸秆/橡胶/PE仿藤条性能的影响[J]. 中国生物工程杂志, 2019, 39(7): 32-38.
[9] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[10] 詹蕙璐,白莹,庄严,孟娟,赵海洋. 纳米材料诱导自噬引发保护作用的研究进展[J]. 中国生物工程杂志, 2019, 39(12): 64-72.
[11] 卢钟腾,呼高伟. 新型细胞穿膜肽的鉴定方法与其在抗肿瘤治疗中的应用[J]. 中国生物工程杂志, 2019, 39(12): 50-55.
[12] 陈秀秀,吴成林,周丽君. 人源抗体制备及临床应用研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 90-96.
[13] 王方旭,陈玉玲,耿读艳,陈传芳. 趋磁细菌及磁小体的生物医学应用研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 74-80.
[14] 邱浩,汪铭书,程安春. γPNA一种新型高效的肽核酸[J]. 中国生物工程杂志, 2018, 38(2): 75-81.
[15] 许丽, 王玥, 姚驰远, 徐萍. 基因编辑技术发展态势分析与建议*[J]. 中国生物工程杂志, 2018, 38(12): 113-122.