Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (7): 72-82    DOI: 10.13523/j.cb.20160711
技术与方法     
工程改造龟裂链霉菌提高土霉素产量
尹守亮1, 林智炜1, 张玉秀1, 王为善2, 史明欣2, 杨克迁2
1 中国矿业大学(北京)化学与环境工程学院 环境与生物工程系 北京 100083;
2 中国科学院微生物研究所 微生物资源前期开发国家重点实验室 北京 100101
Engineering Strategies for Improved the Oxytetracycline Production in Streptomyces rimosus
YIN Shou-liang1, LIN Zhi-wei1, ZHANG Yu-xiu1, WANG Wei-shan2, SHI Ming-xin2, YANG Ke-qian2
1 Department of Environmental and Biological Engineering, School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;
2 State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
 全文: PDF(1021 KB)   HTML
摘要:

土霉素是由龟裂链霉菌合成的一类广谱性抗生素,前期研究工作证明其生物合成受其自身途径特异性调控蛋白OtcR的直接调节,OtcR能够激活和促进土霉素合成基因簇的转录表达。在龟裂链霉菌M4018宿主内利用强启动子单独过表达OtcR蛋白,使土霉素的产量提高到原来产量的4倍;为了进一步提高土霉素产量,在M4108宿主内表达乙酰辅酶A羧化酶基因,提高其胞内土霉素合成的前体物丙二酸单酰辅酶A的含量。对出发菌株M4018进行工程改造,同时过表达途径特异性调控蛋白OtcR和乙酰辅酶A羧化酶,发酵检测改造后的重组工程菌株土霉素的产量由1.37g/L提高到9.09g/L,该研究策略对工程改造龟裂链霉菌提高土霉素的产量具有重要的指导意义。

关键词: 土霉素龟裂链霉菌工程改造途径特异性调控蛋白OtcR乙酰辅酶A羧化酶    
Abstract:

Oxytetracycline (OTC) is a broad-spectrum antibiotic produced by Streptomyces rimosus. OtcR was confirmed to be the pathway-specific activator of OTC biosynthesis to directly activate the oxy (oxytetracycline) cluster. OTC production was significantly improved by overexpression of OtcR under the strong promoters. Overexpression of OtcR increased OTC production dramatically by 4 times compared to the parental strain S. rimosus M4018. For a further improvement of the OTC production, the intracellular pool of malonyl-CoA by overexpressing acetyl-CoA carboxylase in M4018 were increased. Herein, for the OTC production, that by overexpressing both the pathway-specific activator OtcR and acetyl-CoA carboxylase in S. rimosus had been shown, a maximum of 9.09g/L was achieved in recombination strains, while only 1.37g/L in the wild type strain M4018.The work has an important significance for engineering industrial strains to improve OTC production.

Key words: Streptomyces rimosus    Engineering    Pathway-specific activator OtcR acetyl-CoA carboxylase    Oxytetracycline
收稿日期: 2016-04-19 出版日期: 2016-07-25
ZTFLH:  Q81  
基金资助:

国家自然科学基金(31130001),中国矿业大学(北京)中央高校基本科研业务费专项基金(2010YH05),国家大学生创新训练项目(C201503043)资助项目

通讯作者: 张玉秀, 杨克迁     E-mail: zhangyuxiu@cumtb.edu.cn;yangkq@im.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

尹守亮, 林智炜, 张玉秀, 王为善, 史明欣, 杨克迁. 工程改造龟裂链霉菌提高土霉素产量[J]. 中国生物工程杂志, 2016, 36(7): 72-82.

YIN Shou-liang, LIN Zhi-wei, ZHANG Yu-xiu, WANG Wei-shan, SHI Ming-xin, YANG Ke-qian. Engineering Strategies for Improved the Oxytetracycline Production in Streptomyces rimosus. China Biotechnology, 2016, 36(7): 72-82.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160711        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I7/72

[1] 李寅.代谢工程:一项不断发展的菌株改造技术.生物工程学报,2009,25(9):1281-1284.Li Y.Metabolic engineering:an evolving technology for strain improvement.Chinese Journal of Biotechnology,2009,25(9):1281-1284.
[2] 张红岩,辛雪娟,申乃坤,等.代谢工程技术及其在微生物育种的应用.生物技术通报,2012,39(4):17-21.Zhang H Y,Xin X J,Sheng N K,et al.Application of metabolic engineering in strain breeding industrial microbe.Biotechnology Bulletin,2012,39(4):17-21.
[3] 李寅,曹竹安.微生物代谢工程:绘制细胞工厂的蓝图.化工学报,2004,55(10):1573-1580.Li Y,Cao Z A.Microbial metabolic engineering:gateway to develop blueprints for cell factories.Journal of Chemical Industry and Engineering (China),2004,55(10):1573-1580.
[4] Liu G,Chater K F,Chandra G,et al.Molecular regulation of antibiotic biosynthesis in Streptomyces.Microbiol Mol Biol Rev,2013,77(1):112-143.
[5] Takano E,Gramajo H C,Strauch E,et al.Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2).Mol Microbiol,1992,6(19):2797-2804.
[6] Fujii T,Gramajo H C,Takano E,et al.redD and actⅡ-ORF4,pathway-specific regulatory genes for antibiotic production in Streptomyces coelicolor A3(2),are transcribed in vitro by an RNA polymerase holoenzyme containing sigma hrdD.J Bacteriol,1996,178(11):3402-3405.
[7] Jnawali H N,Lee H C,Sohng J K.Enhancement of clavulanic acid production by expressing regulatory genes in gap gene deletion mutant of Streptomyces clavuligerus NRRL3585.J Microbiol Biotechnol,2010,20(1):146-152.
[8] Guo D,Zhao Y,Yang K.Coordination of glycerol utilization and clavulanic acid biosynthesis to improve clavulanic acid production in Streptomyces clavuligerus.Sci China Life Sci,2013,56(7):591-600.
[9] Butler M J,Bruheim P,Jovetic S,et al.Engineering of primary carbon metabolism for improved antibiotic production in Streptomyces lividans.Appl Environ Microbiol,2002,68(10):4731-4739.
[10] Tang Z,Xiao C,Zhuang Y,et al.Improved oxytetracycline production in Streptomyces rimosus M4018 by metabolic engineering of the G6PDH gene in the pentose phosphate pathway.Enzyme Microb Technol,2011,49(1):17-24.
[11] 廖瑜玲,刘志勇,唐振宇,等.龟裂链霉菌zwf2基因敲入及阻断对土霉素合成的影响.食品与药品,2009,11(1):7-10.Liao Y L,Liu Z Y,Tang Z Y,et al.Disruption of zwf2 gene to improve oxytetraclyline biosynthesis in Streptomyces rimosus M4018.Food and Drug,2009,11(1):7-10.
[12] 尹守亮,常亚婧,邓苏萍,等.以病原菌群体感应系统为靶标的新型抗菌药物的研究进展.药学学报,2011,46(6):613-621.Yin S L,Chang Y J,Deng S P,et al.Research progress of new antibacterial drugs that target bacterial quorum sensing systems.Acta Pharmaceutica Sinica,2011,46(6):613-621.
[13] Pickens L B,Tang Y.Oxytetracycline biosynthesis.J Biol Chem,2010,285(36):27509-27515.
[14] Yu L,Cao N,Wang L,et al.Oxytetracycline biosynthesis improvement in Streptomyces rimosus following duplication of minimal PKS genes.Enzyme Microb Technol,2012,50(6):318-324.
[15] Chu X,Zhen Z,Tang Z.Introduction of extra copy of oxytetracycline resistance gene otrB enhances the biosynthesis of oxytetracycline in Streptomyces rimosus.Journal of Bioprocessing&Biotechniques,2012,2(3):1-4.
[16] Kieser T BM,Buttner M J,Chater K F,et al.Practical Streptomyces Genetics.2nd ed.Norwich,UK:The John Innes Foundation,2000:289-295.
[17] Yin S,Wang W,Wang X,et al.Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus.Microb Cell Fact,2015,14(46):1-12.
[18] 齐广辉,杨俊青,田莉瑛,等.几种诱变因子对龟裂链霉菌的诱变效果.河北师范大学学报(自然科学版),2013,37(4):402-409.Qi G H,Yang J Q,Tian L Y,et al.Mutagenic effects of several mutagenic factors on Streptomyces rimosus.Journal of Hebei Normal University (Nature Science Edition),2013,37(4):402-409.
[19] Wang W,Li X,Wang J,et al.An engineered strong promoter for Streptomycetes.Appl Environ Microbiol,2013,79(14):4484-4492.
[20] Peyraud R,Kiefer P,Christen P,et al.Demonstration of the ethylmalonyl-CoA pathway by using 13C metabolomics.Proc Natl Acad Sci USA,2009,106(12):4846-4851.
[21] Zhao Y,Xiang S,Dai X,et al.A simplified diphenylamine colorimetric method for growth quantification.Appl Microbiol Biotechnol,2013,97(11):5069-5077.
[22] Mizuno T,Tanaka I.Structure of the DNA-binding domain of the OmpR family of response regulators.Mol Microbiol,1997,24(3):665-667.
[23] Martinez-Hackert E,Stock A M.The DNA-binding domain of OmpR:crystal structures of a winged helix transcription factor.Structure,1997,5(1):109-124.
[24] Tsung K,Brissette R E,Inouye M.Identification of the DNA-binding domain of the OmpR protein required for transcriptional activation of the ompF and ompC genes of Escherichia coli by in vivo DNA footprinting.J Biol Chem,1989,264(17):10104-10109.
[25] Chen Y,Wendt-Pienkowski E,Shen B.Identification and utility of FdmR1 as a Streptomyces antibiotic regulatory protein activator for fredericamycin production in Streptomyces griseus ATCC 49344 and heterologous hosts.J Bacteriol,2008,190(16):5587-5596.
[26] Tanaka A,Takano Y,Ohnishi Y,et al.AfsR recruits RNA polymerase to the afsS promoter:a model for transcriptional activation by SARPs.J Mol Biol,2007,369(2):322-333.
[27] Bibb M J,Janssen G R,Ward J M.Cloning and analysis of the promoter region of the erythromycin resistance gene (ermE) of Streptomyces erythraeus.Gene,1985,38(1):215-226.
[28] Labes G,Bibb M,Wohlleben W.Isolation and characterization of a strong promoter element from the Streptomyces ghanaensis phage I19 using the gentamicin resistance gene (aacC1) of Tn 1696 as reporter.Microbiology,1997,143(5)1503-1512.
[29] Pethick F E,Macfadyen A C,Tang Z,et al.Draft Genome Sequence of the Oxytetracycline-Producing Bacterium Streptomyces rimosus ATCC 10970.Genome Announc,2013,1(2):e0006313.
[30] Rodriguez E,Banchio C,Diacovich L,et al.Role of an essential acyl coenzyme A carboxylase in the primary and secondary metabolism of Streptomyces coelicolor A3(2).Appl Environ Microbiol,2001,67(9):4166-4176.
[31] Cardenas J,Da Silva N A.Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis.Metab Eng,2016,36(07):80-89.
[32] Zabala D,Brana A F,Salas J A,et al.Increasing antibiotic production yields by favoring the biosynthesis of precursor metabolites glucose-1-phosphate and/or malonyl-CoA in Streptomyces producer strains.J Antibiot (Tokyo),2015,10(1):1-4.
[33] 尹守亮,张玉秀,张琪,等.无机磷酸盐对链霉菌合成次级代谢产物的影响.中国生物工程杂志,2015,35(9):105-113.Yin S L,Zhang Y X,Zhang Q,et al.The effect of inorganic phosphate on the biosynthesis of secondary metabolites in Streptomyces.China Biotechnology,2015,35(9):105-113.
[34] Allenby N E,Laing E,Bucca G,et al.Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor:genome-wide identification of in vivo targets.Nucleic Acids Res,2012,40(19):9543-9556.

[1] 梁欣泉, 李宁, 任勤, 刘继栋. 代谢工程改造酿酒酵母生产L-乳酸的研究进展[J]. 中国生物工程杂志, 2016, 36(2): 109-114.
[2] 王敏 杨慧 高俊莲 马荣才. 高产番茄红素链霉菌选育及摇瓶发酵研究[J]. 中国生物工程杂志, 2009, 29(12): 64-68.
[3] 倪祖梅. 用生物工程改造异种器官的移植[J]. 中国生物工程杂志, 1994, 14(4): 53-54.
[4] DavidA.Hopwood, 庄增辉. 克隆链霉菌的抗生素生物合成基因;产生杂种抗生素[J]. 中国生物工程杂志, 1987, 7(6): 18-22.
[5] 松原谦一, 程光胜. 基因工程的现状与未来(续)[J]. 中国生物工程杂志, 1982, 2(3): 1-7.
[6] 柯为. 酵母制造人体清蛋白将进入商业化生产[J]. 中国生物工程杂志, 1982, 2(3): 42-42.
[7] 柯为. 遗传工程改造氨基酸产生菌取得新进展——苏联获得产苏氨酸高产菌种居领先地位[J]. 中国生物工程杂志, 1982, 2(3): 47-47.