Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2014, Vol. 34 Issue (8): 67-73    DOI: 10.13523/j.cb.20140811
技术与方法     
超支化聚合物新材料富集糖肽方法的研究
邓珊珊1,2, 王明超2, 曹琦琛2, 白海红2, 彭博2, 应万涛1,2, 蔡耘1,2
1. 安徽医科大学 合肥 230032;
2. 蛋白质组学国家重点实验室 北京蛋白质组研究中心 军事医学科学院放射与辐射医学研究所 北京 102206
Glycopeptides Extraction Using Hyperpolymer-assisted Hydrazide Functionalized Microsparticles
DENG Shan-shan1,2, WANG Ming-chao2, CAO Qi-chen2, BAI Hai-hong2, PEN Bo2, YING Wan-tao1,2, CAI Yun1,2
1. Graduate Department of Anhui Medical University, Hefei 230032, China;
2. State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
 全文: PDF(1133 KB)   HTML
摘要:

目的:将自合成的超支化聚合物固定到氨基硅球上形成一种新型的糖肽富集材料,用于糖肽的高效分离与富集。方法:阴离子开环聚合法合成的超支化聚缩水甘油,经高碘酸氧化成为超支化聚甘油醛(hyperbranched polyglycerol-aldehydes,HPG-ALD)后固定于氨基硅球上,再用己二酸二酰肼修饰得到的酰肼材料应用于糖肽富集。结果:经扫描电镜(Scanning Electron Microscope,SEM)、热重分析(thermogravimetric analysis,TGA)等手段证明材料被成功合成。同时,使用制备成功的新材料来富集标准糖蛋白和糖肽都获得了良好的富集效果。结论:实验证明超支化缩水甘油酰肼材料(hyperpolymer-assisted hydrazide functionalized microspheres,HHMs)可用于低丰度糖蛋白/糖肽的富集。

关键词: HHMs糖肽富集    
Abstract:

Objective: A novel approach was developed to selective extraction of glycoproteins by hyperpolymer-assisted hydrazide functionalized microsparticles(HHMs). Methods: Firstly, synthesizing hyperbranched poly-glycerols (HPG) by ring-opening multibranching polymerization of glycidol using dioxane as an emulsifying agent following converted them to aldehyde-functional hyperbranched polyglycerol (HPG-ALD). Upon immobilization on the microspheres, aldehyde group of HPG-ALD were convert to hydrazide group via a reductive alkylation reaction. Conclusion: After characterized by scanning electron microscope (SEM) and Thermo Gravimetric Analysis (TGA), it can be confirmed that HHMs were successfully synthesized and effectively used for the low-abundance glycoproteins/glycopeptides enrichment.

Key words: HHMs    Glycopeptide    Enrichment
收稿日期: 2014-04-26 出版日期: 2014-08-25
ZTFLH:  Q819  
基金资助:

国家重点基础研究 “973”项目(2011CB910603)、国家高技术研究发展计划(2012AA020203)、北京市科技新星计划(Z121107002512014)资助项目

通讯作者: 蔡耘,E-mail:caiy3736@163.com;应万涛,E-mail:proteomics@126.com     E-mail: caiy3736@163.com;proteomics@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

邓珊珊, 王明超, 曹琦琛, 白海红, 彭博, 应万涛, 蔡耘. 超支化聚合物新材料富集糖肽方法的研究[J]. 中国生物工程杂志, 2014, 34(8): 67-73.

DENG Shan-shan, WANG Ming-chao, CAO Qi-chen, BAI Hai-hong, PEN Bo, YING Wan-tao, CAI Yun. Glycopeptides Extraction Using Hyperpolymer-assisted Hydrazide Functionalized Microsparticles. China Biotechnology, 2014, 34(8): 67-73.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20140811        https://manu60.magtech.com.cn/biotech/CN/Y2014/V34/I8/67


[1] Hgglund P, Bunkenborg J, Elortza F, et al. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. Proteome Res, 2004, 3(3): 556-566.

[2] Freeze, H H, Aebi M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Current Opinion in Structural Biology, 2005, 15(5): 490-498.

[3] Leroy J G. Congenital disorders of N-glycosylation including diseases associated with O-as well as N-glycosylation defects. Pediatr Res, 2006, 60(6): 643-656.

[4] Slawson C, Hart G W. O-GlcNAc signalling: implications for cancer cell biology. Nat Rev Cancer, 2011, 11(9): 673-684.

[5] Hongqiang Qin, Liang Zhao, Ruibin Li, et al. Size-selective enrichment of N-linked glycans using highly ordered mesoporous carbon material and detection by MALDI-TOF MS. Anal Chem, 2011, 83(20): 7721-7728.

[6] Huang G, Xiong Z, Qin H, et al. Synthesis of zwitterionic polymer brushes hybrid silica nanoparticles via controlled polymerization for highly efficient enrichment of glycopeptides. Anal Chim Acta, 2014, 809(27): 61-68.

[7] Hengye Li, Heye Wang, Yun chun, et al. A benzoboroxole-functionalized monolithic column for the selective enrichment and separation of cis-diol containing biomolecules. Chemical Communications, 2012, 48(34): 4115-4117.

[8] Nishikaze T, Kawabata S, Iwamoto S, et al. Reversible hydrazide chemistry-based enrichment for O-GlcNAc-modified peptides and glycopeptides having non-reducing GlcNAc residues. Analyst, 2013, 138(23): 7224-7232.

[9] Jing Chen, Punit Shah, Hui Zhang, et al. Solid phase extraction of N-linked glycopeptides using hydrazide tip. Analytical and Bioanalytical Chemistry, 2013, 5(22): 10670-10674.

[10] Zhong Tianping, Ai Pengfei, Zhou Jian, et al.Structures and properties of PAMAM dendrimer: a multi-scale simulation study. Fluid Phase Equilibria, 2011, 302(1): 43-47.

[11] Pan L, Iliuk A, Yu S, et al. Multiplexed quantitation of protein expression and phosphorylation based on functionalized soluble nanopolymers. J Am Chem Soc, 2012, 134(44): 18201-18204.

[12] Iliuk A B, Martin V A, Alicie B M, et al. In-depth analyses of kinase-dependent tyrosine phosphoproteomes based on metal ion-functionalized soluble nanopolymers. Mol Cell Proteomics, 2010, 9(10): 2162-2172.

[13] Oded Kleifeld, Alain Doucet, Ulrich auf dem Keller, et al. Isotopic labeling of terminal amines in complex samples identifies protein N-termini and protease cleavage products. Nature Biotechnology, 2010, 28(3): 281-288.

[14] Cao Qichen, Ma C, Bai H, et al. Multivalent hydrazide-functionalized magnetic nanoparticles for glycopeptide enrichment and identification. Analyst, 2014, 139(3): 603-609.

[15] Zhang Ying, Kuang Min, Zhang Lijuan, et al. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles. Anal Chem, 2013, 85(11): 5535-5541.

[16] Pan Yiting, Bai Haihong, Ma Cheng, et al. Brush polymer modified and lectin immobilized core-shell microparticle for highly efficient glycoprotein/glycopeptide enrichment. Talanta, 2013, 115: 842-848.

[17] Deng Shanshan, Cao Qichen, Ma Chen, et al. Amine-based soluble nanopolymers for highly effective glycopeptide enrichment. Letters in Biotechnology, 2013, 25: 158-164.

[18] Patrick Beaudette, Xifei Yu, Rajesh A, et al. Development of soluble ester-linked aldehyde polymers for proteomics. Anal Chem, 2011, 83(17): 6500-6510.

[19] Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Progress in Polymer Science, 2004, 29(3): 183-275.

[20] Hu M, Chen M, Li G. Biodegradable hyperbranched polyglycerol with ester linkages for drug delivery. Biomacromolecules, 2012, 13(11): 3552-3561.

[21] Carsten Gottschalk, Florian Wolf, Holger Frey. Multi-arm star poly(L-lactide) with hyperbranched polyglycerol core. Macromolecular Chemistry and Physics, 2007, 208(15): 1657-1665.

[22] Li Zhou, Chao Gao, Xu W, et al.Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-initiated dendritic polymerization. Biomacromolecules, 2009, 10(7): 1865-1874.

[1] 马丽丽,易盼盼,敖妮花,焦洪涛,雷瑞鹏,刘欢. 基于学科类别和富集分析的生物安全研究领域学科交叉研究*[J]. 中国生物工程杂志, 2021, 41(12): 116-124.
[2] 陈弘远,陈红岩,乔纯,李建勇,卢大儒. 华氏巨球蛋白血症相关突变MYD88 L265P新型检测体系的建立 *[J]. 中国生物工程杂志, 2018, 38(9): 35-40.
[3] 黄怡,李晓宇,田芳,钱小红,应万涛. 质谱方法实现抗体类药物糖链修饰的鉴定与定量研究[J]. 中国生物工程杂志, 2018, 38(1): 32-41.
[4] 段盛文, 刘正初, 郑科, 冯湘沅, 成莉凤, 郑霞. 从富集液中发掘麻类脱胶果胶酶基因的技术[J]. 中国生物工程杂志, 2014, 34(1): 86-89.
[5] 申健, 张越, 潘秋辉, 孙奋勇. 生物信息学分析及预测miR-17-92的分子调控网络[J]. 中国生物工程杂志, 2012, 32(03): 69-75.
[6] 邹洋, 薛梦阳, 赵颖华, 陈敏. 糖苷内切酶法合成带有均一糖链的糖蛋白和糖肽[J]. 中国生物工程杂志, 2012, 32(02): 107-116.
[7] 梁颂军 谢水波 李仕友 唐东山 刘迎九 刘金香. 具超强富集U(Ⅵ)能力工程菌E.coli的构建[J]. 中国生物工程杂志, 2010, 30(03): 52-55.
[8] 郑文杰, 贺鸿志, 黄峙, 杨芳. 螺旋藻富集和转化硒研究进展[J]. 中国生物工程杂志, 2003, 23(1): 57-60.
[9] H.Hustedt, 勰青. 用两相系统回收蛋白质[J]. 中国生物工程杂志, 1986, 6(4): 39-46.