Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (12): 9-14    
研究报告     
经典Wnt信号途径在肺脏上皮细胞抗结核分枝杆菌感染中的作用
石娟1, 杨佳丽1, 马凌洁1, 包少文1, 马彦1, 程龙1, 马春燕1, 李勇1,2, 刘晓明1,2
1. 西部生物资源保护与利用教育部重点实验室 银川 750021;
2. 宁夏大学生命科学学院 银川 750021
The Role of Canonical Wnt Signaling Pathway in the Lung Epithelial Cells against Mycobacteria Infection
SHI Juan1, YANG Jia-li1, MA Ling-jie1, BAO Shao-wen1, MA Yan1, CHENG Long1, MA Chun-yan1, LI Yong1,2, LIU Xiao-ming1,2
1. Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, China;
2. College of Life Science, Ningxia University, Yinchuan 750021, China
 全文: PDF(591 KB)   HTML
摘要: 目的:肺脏上皮细胞在抵抗外源微生物入侵中发挥着重要保护作用,最近研究揭示,在器官组织发育中发挥调控作用的经典Wnt信号具有免疫调节功能。因此,有必要研究肺脏上皮细胞A549中Wnt 信号经典途径在抗结核分枝杆菌(Mtb)感染中的免疫调节作用。方法:用牛结核分枝杆菌卡介苗(BCG)刺激转入Wnt信号报告基因质粒BATflash的 A549细胞,利用双荧光素酶报告系统、Western blot和ELISA方法分析细胞中Wnt信号经典途径主要相关信号因子和免疫反应炎症因子的表达变化。结果:BCG感染A549细胞后抑制了Wnt信号报告荧光素酶的活性,Western blot结果表明,随着细胞浆内磷酸化β-catenin含量增加,Wnt信号的抑制基因GSK3β和Axin2表达上调,而细胞核中的效应子β-catenin基因活性组分和下游转录因子TCF4与Lef-1的表达下调;BCG感染过表达β-catenin的细胞时导致IL-6、NF-κB、MyD88和TRAF6蛋白表达下调,但不影响TNF-α的表达。结论:肺脏上皮细胞在抗结核分枝杆菌感染过程中通过下调Wnt信号活性而抑制细胞中的MyD88/TRAF6/NF-κB信号通路来降低免疫反应以保护宿主细胞免受感染造成的免疫损伤。
关键词: 免疫反应肺脏上皮细胞经典Wnt信号途径BCG    
Abstract: Purpose: An increasing number of studies has demonstrated that the epithelial cells of lung play a crucial role in the immunity against infections. In addition to the regulatory roles in the organogenesis and the maintenance of cell homeostasis, the canonical Wnt signaling pathway has recently been revealed to be involved in the regulation of immune responses. The aim is to investigate the potential roles of canonical Wnt signaling in the regulation of lung epithelial cells against Mycobacterium tuberculosis infection, using lung epithelial A549 cells. Methods: The A549 cells was transfected with a Wnt signaling reporter plasmid BAT flash, followed by the infection of Mycobacterium bovis vaccine strain Bacillus Calmette-Guerin (BCG). The alteration of Wnt signaling was then ascertained by measuring luciferase activity using a dual-luciferase assay, and the changes of the protein profiles of main Wnt signaling molecules and pro-inflammatory factors of the cells were determined by an immunoblotting assay or an Enzyme-linked immunosorbent assay (ELISA). Results: An inhibition of Wnt signaling luciferase activity was observed following the BCG stimulation, suggesting a negative regulation of Wnt signaling in the epithelial cells against BCG infection. Such finding was further supported by the results of immunoblotting assay and ELISA, in which an up-regulation of inhibitory proteins of Wnt signaling GSK3β(Glycogen Synthase Kinase 3 beta) and Axin2 (Axis inhibition protein) with an increased concentration of phosphorylated β-catenin, was found in the cytosol fraction of cells; and a down-regulation of Wnt signaling effector, active β-catenin and its down-stream transcription factors TCF4 (T cell factor-4) and Lef-1 (lymphoid enhancer-binding factor-1) was determined in the nuclear proteins. More importantly, overexpression of β-catenin showed a down-regulated expression of pro-inflammatory factors of interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB), and the adaptor of Toll-like receptor (TLR) signaling pathway, myeloid differentiation primary response gene 88 (MyD88) and its downstream signaling TNF-receptor associated factor 6 (TRAF6), but no effect on the expression of Tumor necrosis factor-alpha (TNF-α). These data indicated that the Wnt signaling might repress the immune responses through a TLR signaling pathway in lung epithelial cells in response to BCG. Conclusion: The lung epithelial cells may able to alleviate an immune response against Mycobacteria infection through a mechanism of down-regulation of canonical Wnt signaling pathway, subsequently repress the MyD88/TRAF6/NF-κB pathway and protect the host cells from immune injury.
Key words: Lung epithelial cells    Canonical Wnt signaling pathway BCG    Immune response
收稿日期: 2013-08-07 出版日期: 2013-12-25
ZTFLH:  Q291  
基金资助: 国家自然科学基金资助项目(31172278,31260615)
通讯作者: 李勇,E-mail:lxm1966@nxu.edu.cn;刘晓明,E-mail:liyong7732@126.com     E-mail: lxm1966@nxu.edu.cn;liyong7732@126.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
马春燕
李勇
刘晓明
程龙
石娟
杨佳丽
马凌洁
包少文
马彦

引用本文:

石娟, 杨佳丽, 马凌洁, 包少文, 马彦, 程龙, 马春燕, 李勇, 刘晓明. 经典Wnt信号途径在肺脏上皮细胞抗结核分枝杆菌感染中的作用[J]. 中国生物工程杂志, 2013, 33(12): 9-14.

SHI Juan, YANG Jia-li, MA Ling-jie, BAO Shao-wen, MA Yan, CHENG Long, MA Chun-yan, LI Yong, LIU Xiao-ming. The Role of Canonical Wnt Signaling Pathway in the Lung Epithelial Cells against Mycobacteria Infection. China Biotechnology, 2013, 33(12): 9-14.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I12/9

[1] Hippenstiel S, Opitz B, Schmeck B, et al.Lung epithelium as a sentinel and effector system in pneumonia-molecular mechanisms of pathogen recognition and signal transduction. Respir Res, 2006, 7: 97.
[2] Li Y, Wang Y, Liu X. The role of airway epithelial cells in response to mycobacteria infection. Clin Dev Immunol, 2012, 20(12): 791392.
[3] Konigshoff M, Eickelberg O. WNT signaling in lung disease: a failure or a regeneration signal? Am J Respir Cell Mol Biol, 2010, 42(1): 21-31.
[4] Clevers H, Nusse R. Wnt/beta-catenin signaling and disease. Cell, 2012, 149(6):1192-1205.
[5] Staal F J, Clevers H C.Wnt signaling in the thymus. Curr Opin Immunol, 2003, 15(2):204-208.
[6] Staal F J.Transcriptional control of the lymphocyte differentiation. Stem Cells, 2001, 19(3):165-179.
[7] Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035):843-850.
[8] Timm A, Grosschedl R. Wnt signaling in lymphopoiesis. Curr Top Microbiol Immunol, 2005, 290:225-252.
[9] Brannon M, Barker N. A beta-catenin/XTcf-3 complex binds to the siamois promoter to regulate dorsal axis specification in Xenopus. Genes Dev, 1997, 11(18):2359-2370.
[10] Neumann J, Schaale K, Farhat K, et al. Frizzled1 is a marker of inflammatory macrophages, and its ligand Wnt3a is involved in reprogramming Mycobacterium tuberculosis-infected macrophages. FASEB J, 2010, 24(11):4599-4612.
[11] Jho E H. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol, 2002, 22(4):1172-1183.
[12] Liu X, Li Y, Wang Y, et al. Sox17 modulates Wnt3A/beta-catenin-mediated transcriptional activation of the Lef-1 promoter. Am J Physiol Lung Cell Mol Physiol, 2010, 299(5):694-710.
[13] Dugo L, Collin M, Thiemermann C. Glycogen synthase kinase 3beta as a target for the therapy of shock and inflammation. Shock, 2007, 27(2):113-123.
[1] 于欣鑫, 高晋君, 李勇, 李晶. flg22诱导的拟南芥转录组分析及芥子油苷代谢途径的变化[J]. 中国生物工程杂志, 2014, 34(5): 30-38.
[2] 陆健, 江佳稀, 刘建平, 王洪海. 结核分枝杆菌抗原重组酿酒酵母免疫诱导小鼠特异性免疫应答[J]. 中国生物工程杂志, 2014, 34(11): 47-53.
[3] 高晶, 高雪涛, 段志强, 李文辉. 治疗性疫苗研究进展[J]. 中国生物工程杂志, 2003, 23(2): 83-85.
[4] 陈诗书. “瘤苗”——细胞因子转导人肿瘤细胞[J]. 中国生物工程杂志, 1999, 19(4): 17-22.
[5] 曲殿波, 刘传暄, 马清钧. 肿瘤免疫治疗的一种新技术——肽脉冲[J]. 中国生物工程杂志, 1998, 18(4): 58-63.
[6] 王宾. DNA疫苗的发展与应用[J]. 中国生物工程杂志, 1995, 15(6): 21-23,32.
[7] 吴稷. 蛋白质的PEG化[J]. 中国生物工程杂志, 1995, 15(4): 48-51.
[8] 戴秀玉. 艾滋病疫苗的研制进展[J]. 中国生物工程杂志, 1992, 12(2): 21-24.
[9] 方苏华. 工业设备生物传感器的研制[J]. 中国生物工程杂志, 1987, 7(1): 68-68.
[10] GNigelGodson;彭金枝. 疟疾疫苗的分子途经[J]. 中国生物工程杂志, 1986, 6(2): 40-45.
[11] SherieL.Morrison, 杨志兴, 刘伟民, 王革伏. 转染瘤提供新的镶嵌抗体[J]. 中国生物工程杂志, 1986, 6(1): 59-66.
[12] 聂世芳. 一种制造人抗体的新方法[J]. 中国生物工程杂志, 1983, 3(4): 52-52.
[13] 睿中. 遗传工程师揭开了免疫系统的秘密[J]. 中国生物工程杂志, 1983, 3(2): 69-70.
[14] 何丰, 柯为. 分子遗传学术语解释(续)[J]. 中国生物工程杂志, 1982, 2(3): 79-82.