Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (8): 103-108    DOI: 10.13523/j.cb.20150815
综述     
成纤维细胞生长因子20研究进展
赵央1, 田海山1, 李校堃1,2, 姜潮1,2
1. 温州医科大学药学院 温州 325035;
2. 吉林农业大学生物反应器与药物开发教育部工程研究中心 长春 130118
The Research Progress of Fibroblast Growth Factor 20
ZHAO Yang1, TIAN Hai-shan1, LI Xiao-kun1,2, JIANG Chao1,2
1. Wenzhou Medical University, Whenzhou 325035, China;
2. Bioreactor with the Drug Development Project of the Ministry of Education Research Center, Jilin Agricultural University, Changchun 130118, China
 全文: PDF(596 KB)   HTML
摘要:

成纤维细胞生长因子20(FGF20)是成纤维细胞生长因子家族(FGFs)的成员之一。研究发现,FGF20具有广泛生物学活性,不仅在退行性神经系统疾病,如帕金森病中起着重要作用,还在组织修复,肿瘤发生、器官发育等方面具有重要的生物学功能。尽管作为重组蛋白药物的开发其功能和机制仍有待进一步研究,但FGF20所具备的生物学特性将会有非常广阔的研究领域和应用价值。

关键词: 成纤维细胞生长因子20退行性神经系统疾病帕金森病    
Abstract:

FGF20 (fibroblast growth factor 20, FGF20) is one of the members of fibroblast growth factor (FGFs) family. It has been found that FGF20 has a wide range of biological activity, not only in brain degenerative neurological diseases such as Parkinson's disease,but also has important biological functions in tissue repair, tumorigenesis, and other aspects of organ development. Although as a recombinant protein possessing drug development potential but its mechanism remains to be further study, yet it has been believed that the biological characteristics of FGF20 has a very broad areas of research and application.

Key words: FGF20    Degenerative nervous system diseases    Parkinson's disease
收稿日期: 2015-03-19 出版日期: 2015-08-25
ZTFLH:  Q819  
基金资助:

通讯作者,

通讯作者: 李校堃,姜潮     E-mail: xiaokunli@163.net;chaojiang10@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

赵央, 田海山, 李校堃, 姜潮. 成纤维细胞生长因子20研究进展[J]. 中国生物工程杂志, 2015, 35(8): 103-108.

ZHAO Yang, TIAN Hai-shan, LI Xiao-kun, JIANG Chao . The Research Progress of Fibroblast Growth Factor 20. China Biotechnology, 2015, 35(8): 103-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150815        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I8/103


[1] Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nature Reviews Drug Discovery, 2009, 8(3): 235-253.

[2] Hajihosseini M K, Heath J K. Expression patterns of fibroblast growth factors-18 and-20 in mouse embryos is suggestive of novel roles in calvarial and limb development. Mechanisms of Development, 2002, 113(1): 79-83.

[3] Jeffers M, McDonald W F, Chillakuru R A, et al. A novel human fibroblast growth factor treats experimental intestinal inflammation. Gastroenterology, 2002, 123(4): 1151-1162.

[4] Maclachlan T, Narayanan B, Gerlach V L, et al. Human fibroblast growth factor 20 (FGF-20; CG53135-05): a novel cytoprotectant with radioprotective potential. International Journal of Radiation Biology, 2005, 81(8): 567-579.

[5] Ohmachi S, Watanabe Y, Mikami T, et al. FGF-20, a novel neurotrophic factor, preferentially expressed in the substantia nigra pars compacta of rat brain. Biochemical and Biophysical Research Communications, 2000, 277(2): 355-360.

[6] Ohmachi S, Mikami T, Konishi M, et al. Preferential neurotrophic activity of fibroblast growth factor-20 for dopaminergic neurons through fibroblast growth factor receptor-1c. Journal of Neuroscience Research, 2003, 72(4): 436-443.

[7] Jeffers M, Shimkets R, Prayaga S, et al. Identification of a novel human fibroblast growth factor and characterization of its role in oncogenesis. Cancer Research, 2001, 61(7): 3131-3138.

[8] Kirikoshi H, Sagara N, Saitoh T, et al. Molecular cloning and characterization of human FGF-20 on chromosome 8p21. 3-p22. Biochemical and Biophysical Research Communications, 2000, 274(2): 337-343.

[9] Plotnikov A N, Eliseenkova A V, Ibrahimi O A, et al. Crystal structure of fibroblast growth factor 9 reveals regions implicated in dimerization and autoinhibition. Journal of Biological Chemistry, 2001, 276(6): 4322-4329.

[10] Kalinina J, Byron S A, Makarenkova H P, et al. Homodimerization controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix. Molecular and Cellular Biology, 2009, 29(17): 4663-4678.

[11] Fan H, Vitharana S N, Chen T, et al. Effects of pH and polyanions on the thermal stability of fibroblast growth factor 20. Molecular Pharmaceutics, 2007, 4(2): 232-240.

[12] 时小燕, 郭靓. 成纤维细胞生长因子家族: 生物学特性, 病理生理学作用及相关治疗方法. 国际药学研究杂志, 2009, 36(5): 376-379. Shi X Y, Guo L. Fibroblast growth factor family: biological characteristics, pathophysiological role and related treatment methods. Journal of International Pharmaceutical Research, 2009, 36 (5): 376-379.

[13] Thisse B, Thisse C. Functions and regulations of fibroblast growth factor signaling during embryonic development. Developmental Biology, 2005, 287(2): 390-402.

[14] de Mena L, Cardo L F, Coto E, et al. FGF20 rs12720208 SNP and microRNA-433 variation: no association with Parkinson's disease in Spanish patients. Neuroscience Letters, 2010, 479(1): 22-25.

[15] Barker N, Clevers H. Mining the Wnt pathway for cancer therapeutics. Nature Reviews Drug Discovery, 2006, 5(12): 997-1014.

[16] Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell, 2000, 103(2): 311-320.

[17] Huang H, Ushijima T, Nagao M, et al. β-Catenin mutations in liver tumors induced by 2-amino-3, 4-dimethylimidazo quinoline in CDF 1 mice. Cancer Letters, 2003, 198(1): 29-35.

[18] Cui J, Zhou X, Liu Y, et al. Alterations of beta-catenin and Tcf-4 instead of GSK-3beta contribute to activation of Wnt pathway in hepatocellular carcinoma. Chinese Medical Journal, 2003, 116(12): 1885-1892.

[19] Park J Y, Park W S, Nam S W, et al. Mutations of β-catenin and AXIN I genes are a late event in human hepatocellular carcinogenesis. Liver International, 2005, 25(1): 70-76.

[20] Chung G G, Zerkowski M P, Ocal I T, et al. β-Catenin and p53 analyses of a breast carcinoma tissue microarray. Cancer, 2004, 100(10): 2084-2092.

[21] Rowlands T M, Pechenkina I V, Hatsell S, et al. b-Catenin and Cyclin D1: Connecting development to breast cancer. Cell Cycle, 2004, 3(2): 143-146.

[22] Chamorro M N, Schwartz D R, Vonica A, et al. FGF-20 and DKK1 are transcriptional targets of β-catenin and FGF-20 is implicated in cancer and development. The EMBO Journal, 2005, 24(1): 73-84.

[23] 刘萍, 李云峰, 张捷, 等. FGF-20 在结直肠癌中的表达及临床意义. 实用癌症杂志, 2009, 24(4): 358-359. Liu P, Li Y F, Zhang J,et al. The expression of FGF-20 and its clinical significance in the tissues from colorectal cancer. The Practical Journal of Cancer, 2009, 24 (4): 358-359.

[24] Takagi Y, Takahashi J, Saiki H, et al. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. Journal of Clinical Investigation, 2005, 115(1): 102-109.

[25] van der Walt J M, Noureddine M A, Kittappa R, et al. Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. The American Journal of Human Genetics, 2004, 74(6): 1121-1127.

[26] Fuchs E. Scratching the surface of skin development. Nature, 2007, 445(7130): 834-842.

[27] Mikkola M L, Millar S E. The mammary bud as a skin appendage: unique and shared aspects of development. Journal of Mammary Gland Biology and Neoplasia, 2006,11(3-4): 187-203.

[28] Schmidt-Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis. Bioessays, 2005, 27(3): 247-261.

[29] Lim X, Nusse R. Wnt signaling in skin development, homeostasis, and disease. Cold Spring Harbor Perspectives in Biology, 2013,5(2):a008029.

[30] Mou C, Jackson B, Schneider P, et al. Generation of the primary hair follicle pattern. Proceedings of the National Academy of Sciences, 2006, 103(24): 9075-9080.

[31] Fliniaux I, Mikkola M L, Lefebvre S, et al. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Developmental Biology, 2008, 320(1): 60-71.

[32] Huh S H, Närhi K, Lindfors PH, et al. Fgf20 governs formation of primary and secondary dermal condensations in developing hair follicles. Genes & Development, 2013, 27(4): 450-458.

[33] Wang G, van der Walt J M, Mayhew G, et al. Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of α-synuclein. The American Journal of Human Genetics, 2008, 82(2): 283-289.

[34] Huh S H, Jones J, Warchol M E, et al. Differentiation of the lateral compartment of the cochlea requires a temporally restricted FGF20 signal. PLoS Biology, 2012, 10(1): e1001231.

[35] Miller R H, Fyffe-Maricich S L. Restoring the balance between disease and repair in multiple sclerosis: insights from mouse models. Disease Models & Mechanisms, 2010, 3(9-10): 535-539.

[36] Han D S, Li F, Holt L, et al. Keratinocyte growth factor-2 (FGF-10) promotes healing of experimental small intestinal ulceration in rats. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2000, 279(5): 1011-1022.

[37] Zhao C, Wang X, Wang J, et al. Effect of moxibustion on the expressions of protein KGF-1, KGF-2 and IL-6 in colon of rats with ulcerative colitis. Journal of Acupuncture and Tuina Science, 2012, 10(3): 138-145.

[38] Alvarez E, Fey E G, Valax P, et al. Preclinical characterization of CG53135 (FGF-20) in radiation and concomitant chemotherapy/radiation-induced oral mucositis. Clinical Cancer Research, 2003, 9(9): 3454-3461.

[39] Schuster M W, Shore T B, Harpel J G, et al. Safety and tolerability of velafermin (CG53135-05) in patients receiving high-dose chemotherapy and autologous peripheral blood stem cell transplant. Supportive Care in Cancer, 2008, 16(5): 477-483.

[40] Maclachlan T, Narayanan B, Gerlach V L, et al. Human fibroblast growth factor 20 (FGF-20; CG53135-05): a novel cytoprotectant with radioprotective potential. International Journal of Radiation Biology, 2005, 81(8): 567-579.

[41] Hayashi T, Ray C A, Bermingham-McDonogh O. Fgf20 is required for sensory epithelial specification in the developing cochlea. The Journal of Neuroscience, 2008, 28(23): 5991-5999.

[42] Sleeman I J, Boshoff E L, Duty S. Fibroblast growth factor-20 protects against dopamine neuron loss in vitro and provides functional protection in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Neuropharmacology, 2012, 63(7): 1268-1277.

[43] Shimada H, Yoshimura N, Tsuji A, et al. Differentiation of dopaminergic neurons from human embryonic stem cells: modulation of differentiation by FGF-20. Journal of Bioscience and Bioengineering, 2009, 107(4): 447-454.

[44] Häärä O, Harjunmaa E, Lindfors P H, et al. Ectodysplasin regulates activator-inhibitor balance in murine tooth development through Fgf20 signaling. Development, 2012, 139(17): 3189-3199.

[45] Kaya F, Mannioui A, Chesneau A, et al. Live imaging of targeted cell ablation in Xenopus: a new model to study demyelination and repair. The Journal of Neuroscience, 2012, 32(37): 12885-12895.

[46] Katoh M, Katoh M, Katoh Y. Comparative genomics on FGF20 orthologs. Oncology Reports, 2005, 14(1): 287-290.

[1] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[2] 王洪苏, 关桂静, 刘金香. Alexa Fluor荧光标记在细胞学和分子生物学研究中的应用[J]. 中国生物工程杂志, 2015, 35(9): 71-77.
[3] 周立军, 刘文娟, 祁永浩, 李妙. SOCS3通过JNK和STAT3信号通路调控AKT[J]. 中国生物工程杂志, 2015, 35(9): 50-56.
[4] 梁高峰, 何向峰, 陈宝安. miRNA在肿瘤分子诊断和治疗中的研究进展[J]. 中国生物工程杂志, 2015, 35(9): 57-65.
[5] 尉研, 王焕琴, 吴萌, 张凤娟, 梁国栋, 朱武洋. 黄病毒检测工程细胞系的构建及功能鉴定[J]. 中国生物工程杂志, 2015, 35(9): 35-41.
[6] 李洪昌, 袁林, 张令强. 抑癌基因PTEN转基因小鼠的构建及表型初步分析[J]. 中国生物工程杂志, 2015, 35(8): 1-8.
[7] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[8] 康学军, 杨怡姝. HIV-1潜伏感染体外实验模型研究进展[J]. 中国生物工程杂志, 2015, 35(8): 96-102.
[9] 黄鹏, 李文姝, 谢君, 鲍建瑛, 曹晓娥, 余龙, 徐一新. 人源类溶菌酶蛋白6在毕赤酵母中的重组表达及活性分析[J]. 中国生物工程杂志, 2015, 35(8): 30-37.
[10] 朱志坚, 连凯琪, 杨帆, 张伟, 郑海学, 杨孝朴. 稳定表达鼠源整联蛋白αvβ6的CHO-677细胞系的构建[J]. 中国生物工程杂志, 2015, 35(8): 23-29.
[11] 任琴, 郭志鸿, 王亚军, 谢忠奎, 王若愚. RNA干扰及其在增强作物抵抗有害真核生物研究中的应用[J]. 中国生物工程杂志, 2015, 35(6): 80-89.
[12] 张超, 项丽娜, 陈德培, 吕鑫鑫, 赵宜桐, 王璐瑶, 肖健, 张宏宇. 碱性成纤维细胞生长因子促进神经损伤修复的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 75-79.
[13] 贾翠丽, 张华伟, 王斌斌, 朱宏吉, 乔建军. 革兰氏阳性菌自然感受态生理机制的研究进展[J]. 中国生物工程杂志, 2015, 35(6): 90-100.
[14] 李佳鑫, 冯炜, 王志钢, 王彦凤. CRISPR/Cas9技术及其在转基因动物中的应用[J]. 中国生物工程杂志, 2015, 35(6): 109-115.
[15] 刘静, 骆超超, 黄建国, 吴迪, 高学军, 刘玉芬. 14-3-3γ蛋白协同mTOR信号通路影响奶牛乳腺上皮细胞生理功能[J]. 中国生物工程杂志, 2015, 35(6): 32-39.