Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (6): 8-13    DOI: 10.13523/j.cb.20150602
研究报告     
乙酰化修饰调控结核杆菌异柠檬酸裂合酶的研究
李瑶瑶, 毕静, 王艺红, 秦云贺, 张雪莲
复旦大学 生命科学学院 遗传工程国家重点实验室 上海 200433
Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis
LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian
State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
 全文: PDF(520 KB)   HTML
摘要:

目的:探索结核杆菌异柠檬酸裂合酶(ICL)蛋白322位点赖氨酸(Lys322)的乙酰化修饰对蛋白功能的调控作用。方法:构建结核杆菌ICL蛋白原核表达载体pET28a-icl,并对Lys322位点进行定点突变为精氨酸(Arg,R)和谷氨酰胺(Glu,Q),体外表达纯化获得重组蛋白ICLWT、ICL322R和ICL322Q。通过Western blotting和酶活性测定来揭示Lys322位点突变前后对蛋白的乙酰化修饰水平及蛋白功能的影响。结果:Western blotting检测发现大肠杆菌表达体系获得的ICLWT、ICL322R和ICL322Q蛋白均有较高水平的蛋白赖氨酸乙酰化修饰信号,较ICLWT,ICL322R和ICL322Q突变蛋白的酶活性分别下降了大约50%和70%。结论:在大肠杆菌的表达体系中,ICL蛋白可以获得乙酰化修饰。ICL322Q突变蛋白酶活性的显著下降,揭示Lys322位点乙酰化修饰对ICL蛋白的功能存在负向调控。为未来深入探索赖氨酸乙酰化修饰对结核杆菌代谢,潜伏感染的调控作用奠定了基础。

关键词: 异柠檬酸裂合酶乙酰化修饰定点突变    
Abstract:

Objective: Isocitrate lyase (ICL) of Mycobacterium tuberculosis (Mtb) was acetylated at lysine 322. The aim was to investigate ICL Lys322 acetylation and its regulatory function in activity of ICL. Methods: The prokaryotic expression plasmids pET28a-icl was constructed and Lys322 of ICL was site-directed mutated into arginine (Arg, R) and glutamine (Gln, Q), respectively. Then recombinant proteins ICLWT,ICL322R and ICL322Q were expressed and purified in vitro. Acetylation of wild type ICL and its mutants were examined by Western blotting with anti-acetyllysine antibody, and enzyme activities of proteins were evaluated. Results: Western blotting showed that ICLWT,ICL322R and ICL322Q were indeed acetylated proteins. Compared with activity of ICLWT, mutation of Lys322 to arginine decreased the enzyme activity by approximately 50%, and glutamine substitution dramatically decreased the activity more than 70%. Conclusion: The results of Western blotting showed that the ICL and two mutant proteins can be acetylated effectively in E. coli expression system. Decreasing in ICL322Q activity suggested that Lys322 acetylation could negatively regulate isocitrate lyase of Mycobacterium tuberculosis. This provided a foundation to study an important aspect of Mtb, the metabolic regulation of Mtb, which may lead to new knowledge on latent infection.

Key words: Isocitrate lyase    acetylation    site-directed mutagenesis
收稿日期: 2015-03-13 出版日期: 2015-06-25
ZTFLH:  Q81  
基金资助:

国家自然科学基金资助项目(81261120558、30901828)

通讯作者: 张雪莲     E-mail: xuelianzhang@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李瑶瑶, 毕静, 王艺红, 秦云贺, 张雪莲. 乙酰化修饰调控结核杆菌异柠檬酸裂合酶的研究[J]. 中国生物工程杂志, 2015, 35(6): 8-13.

LI Yao-yao, BI Jing, WANG Yi-hong, QIN Yun-he, ZHANG Xue-lian. Lysine-322 Acetylation Negatively Regulates Isocitrate Lyase of Mycobacterium tuberculosis. China Biotechnology, 2015, 35(6): 8-13.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150602        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I6/8


[1] 毕静, 张雪莲. 原核生物中蛋白质乙酰化修饰的研究进展. 中国生物工程杂志, 2013, 33(9): 79-84. Bi J, Zhang X L.Protein acetylation in prokaryotes. China Biotechnology, 2013,33(9):79-84.

[2] Yu B J, Kim J A, Moon J H, et al. The diversity of lysine-acetylated proteins in Escherichia coli. Journal of Microbiology and Biotechnology, 2008, 18(9): 1529-1536.

[3] Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 327(5968): 1004-1007.

[4] Liu F, Yang M, Wang X, et al. Acetylome analysis reveals diverse functions of lysine acetylation in Mycobacterium tuberculosis. Molecular & Cellular Proteomics, 2014, 13(12): 3352-336

[5] Xie L, Wang X, Zeng J, et al. Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. The International Journal of Biochemistry & Cell Biology, 2015, 59(2): 193-202.

[6] Murthy PS, Sirsi M, Ramakrishnan T. Effect of age on the enzymes of tricarboxylic acid and related cycles in Mycobacterium tuberculosis H37Rv. Am Rev Respir Dis, 1973, 108(3): 689-690.

[7] Zu Bentrup K H, Miczak A, Swenson D L, et al. Characterization of activity and expression of isocitrate lyase in Mycobacterium avium and Mycobacterium tuberculosis. Journal of Bacteriology, 1999, 181(23): 7161-7167.

[8] Wayne L G, Lin K Y. Glyoxylate metabolism and adaptation of Mycobacterium tuberculosis to survival under anaerobic conditions. Infect Immun, 1982, 37 (3): 1042-1049.

[9] Sturgill-Koszycki S, Haddix PL, Russell D G. The interaction between Mycobacterium and the macrophage analyzed by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis, 1997, 18(14): 2558-2565.

[10] Xiong Y, Guan K L. Mechanistic insights into the regulation of metabolic enzymes by acetylation. The Journal of Cell Biology, 2012, 198(2): 155-164.

[11] Yu W, Lin Y, Yao J, et al. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in response to nutrient signals. Journal of Biological Chemistry, 2009, 284(20): 13669-13675.

[12] Zhao D, Zou S W, Liu Y, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 2013, 23(4): 464-476.

[13] Kim E Y, Kim W K, Kang H J, et al. Acetylation of malate dehydrogenase 1 promotes adipogenic differentiation via activating its enzymatic activity. Journal of Lipid Research, 2012, 53(9): 1864-1876.

[14] Muñoz-Elías E J, Upton A M, Cherian J, et al. Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Molecular Microbiology, 2006, 60(5): 1109-1122.

[1] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[2] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[3] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[4] 苏永君,胡蝶,胡博淳,李闯,文正,章晨,邬敏辰. 定点突变提高环氧化物水解酶AuEH2催化对甲基苯基缩水甘油醚的对映选择性*[J]. 中国生物工程杂志, 2020, 40(3): 88-95.
[5] 阚婷婷,宗迅成,苏永君,王婷婷,李闯,胡蝶,邬敏辰. 定点突变改善PvEH1对邻甲基苯基缩水甘油醚的催化特性 *[J]. 中国生物工程杂志, 2019, 39(6): 9-16.
[6] 孟浩毅,李丹阳,孙正阳,杨兆勇,张志斐,袁丽杰. 人类线粒体肌酸激酶uMtCK的底物结合位点分析 *[J]. 中国生物工程杂志, 2018, 38(5): 24-32.
[7] 李雪晴, 袁风娇, 程建青, 董运海, 李剑芳, 邬敏辰. 杂合β-甘露聚糖酶AuMan5Aloop的H321对其酶学性质的影响[J]. 中国生物工程杂志, 2017, 37(2): 48-53.
[8] 吴芹, 胡蝶, 李雪晴, 袁风娇, 李剑芳, 邬敏辰. Y13F定点突变改良米曲霉中温木聚糖酶的耐热性[J]. 中国生物工程杂志, 2016, 36(12): 36-41.
[9] 代玉环, 徐尧, 罗颖, 代洋, 石伟林, 徐瑶. Myocardin调控心肌H9C2细胞Ca2+通道机制研究[J]. 中国生物工程杂志, 2016, 36(11): 1-6.
[10] 向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.
[11] 高瑞平, 程隆斌, 李振秋. 一种简便快速的单引物PCR定点突变方法[J]. 中国生物工程杂志, 2015, 35(5): 61-65.
[12] 夏亚穆, 李晨晨. 环糊精葡萄糖基转移酶的基因改造与高效表达[J]. 中国生物工程杂志, 2015, 35(2): 105-110.
[13] 阮景军, 杨毅, 唐自钟, 陈惠. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究[J]. 中国生物工程杂志, 2015, 35(12): 30-36.
[14] 裴智勇, 侯仙慧, 桂小柯, 陈禹保. Primer Spanner:一个高效的定点突变PCR引物设计在线工具[J]. 中国生物工程杂志, 2015, 35(10): 53-58.
[15] 杲光伟, 李桂林, 黄家语, 李大伟. A和C结构域糖基化位点对凝血八因子的分泌及活性的影响[J]. 中国生物工程杂志, 2014, 34(10): 1-7.