Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2015, Vol. 35 Issue (1): 82-87    DOI: 10.13523/j.cb.20150112
综述     
多酶共固定化反应体系的研究进展
汤玉兰, 陈缵光, 成志毅
中山大学药学院 广州 510006
Research Progress in Multi-enzyme Co-immobilization Reaction Systems
TANG Yu-lan, CHEN Zuan-guang, CHENG Zhi-yi
School of Pharmaceutical Sciences, Sun Yat sen University, Guangzhou 510006, China
 全文: PDF(549 KB)   HTML
摘要:

近年来,生物催化为化学、生物学和生物工程学等领域提供了一种绿色研究工具,其中多酶体系在这些领域中的应用越来越受到关注,其克服了以往单个酶不能满足催化需求的局限性,同时多酶共固定化在级联反应过程中,可增加酶周围的反应物浓度,并将不同酶的催化特性结合起来,能排除干扰因素,从而提高酶的整体催化效率。对多酶共固定化反应体系的研究进展进行了综述,包括多酶反应体系的类别、共固定化技术的特点以及相关应用,并对共固定化多酶反应体系进行了展望。

关键词: 共固定化生物催化多酶    
Abstract:

In recent years, biocatalysis has started to provide an important green study tool in chemistry、 biology、Bioengineering and so on, currently, the ideal of using multi-enzymatic systems for these fields becomes increasingly attractive, it overcomes this limitation that many situations where a single enzyme cannot completely catalyze reactions, meanwhile, in the cascade reactions, it can cause the enzyme to act under a higher substrate concentration and combine different enzyme catalytic properties, also can eliminate interference factors by using the co-immobilized enzymes, therefore the whole catalytic efficiency may be improved. The research progress in Multi-enzyme Co-immobilization reaction systems was reviewed in three aspects including the classification of multi-enzyme reaction systems、the characteristics and applications of co-immobilization technology. In addition, Multi-enzyme Co-immobilization reaction systems were also predicted.

Key words: Biocatalysis    Multi-enzyme    Co-immobilization
收稿日期: 2014-10-21 出版日期: 2015-01-25
ZTFLH:  Q814  
通讯作者: 成志毅     E-mail: chengzhy@mail.sysu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

汤玉兰, 陈缵光, 成志毅. 多酶共固定化反应体系的研究进展[J]. 中国生物工程杂志, 2015, 35(1): 82-87.

TANG Yu-lan, CHEN Zuan-guang, CHENG Zhi-yi. Research Progress in Multi-enzyme Co-immobilization Reaction Systems. China Biotechnology, 2015, 35(1): 82-87.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20150112        https://manu60.magtech.com.cn/biotech/CN/Y2015/V35/I1/82


[1] Tao J H,Xu J H.Biocatalysis in development of green pharmaceutical processes.Curr Opin Chem Biol,2009,13(1):43-50.

[2] Reed L J.Multienzyme complexes.Accounts Chem Res,1974,7:40-45.

[3] Najdi T S,Hatfield G W,Mjolsness E D.A 'random steady-state' model for the pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase enzyme complexes.Phys Biol,2010,7(1):1-8.

[4] Rodrigues R C,Ortiz C,Berenguer-Murcia A,et al. Modifying enzyme activity and selectivity by immobilization.Chem Soc Rev,2013,42(15):6290-6307.

[5] Wichmann R,Vasic-Racki D.Cofactor regeneration at the lab scale.Adv Biochem Eng Biot,2005,92:225-260

[6] Jia F,Narasimhan B,Mallapragada S.Materials-based strategies for multi-enzyme immobilization and co-localization: a review.Biotechnol Bioeng,2014,111(2):209-222.

[7] Xue R,Woodley J M.Process technology for multi-enzymatic reaction systems.Bioresource Technol,2012,115:183-195.

[8] Ricca E,Brucher B,Schrittwieser J Multi-Enzymatic Cascade Reactions: Overview and Perspectives.Adv Synth Catal,2011,353(13):2239-2262.

[9] Bruggink A,Schoevaart R,Kieboom T.Concepts of nature in organic synthesis: Cascade catalysis and multistep conversions in concert.Org Process Res Dev,2003,7(5):622-640.

[10] Zubiolo C,Santos R C A,Carvalho N B,et al.Encapsulation in a sol-gel matrix of lipase from Aspergillus niger obtained by bioconversion of a novel agricultural residue.Bioproc Biosyst Eng,2014,37(9):1781-1788.

[11] Li Y S,Liu W P,Gao X F,et al.Immobilized enzymatic fluorescence capillary biosensor for determination of sulfated bile acid in urine.Biosens Bioelectron,2008,24(4):538-544.

[12] Li Y S,Du Y D,Chen T M,et al.A novel immobilization multienzyme glucose fluorescence capillary biosensor.Biosens Bioelectron,2010,25(6):1382-1388.

[13] Betancor L,Berne C,Luckarift H R,et al.Coimmobilization of a redox enzyme and a cofactor regeneration system.Chem Commun,2006,(34):3640-3642.

[14] Nakane K,Suye S I,Ueno T,et al.Coimmobilization of malic enzyme and alanine dehydrogenase on organic-inorganic hybrid gel fibers and the production of L-alanine from malic acid using the fibers with coenzyme regeneration.J Appl Polym Sci,2010,116(5):2901-2905.

[15] Gupta R,Chaudhury N K.Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects.Biosens Bioelectron,2007,22(11):2387-2399.

[16] Mandizadeh F,Eskandarian M.Glucose oxidase and catalase co-immobilization on biosynthesized nanoporous SiO2 for removal of dissolved oxygen in water: corrosion controlling of boilers.J Ind Eng Chem,2014,20(4):2378-2383.

[17] He P,Davies J,Greenway G,et al.Measurement of acetylcholinesterase inhibition using bienzymes immobilized monolith micro-reactor with integrated electrochemical detection.Anal Chim Acta,2010,659(1-2):9-14.

[18] Koh W G,Pishko M. Immobilization of multi-enzyme microreactors inside microfluidic devices.Sensor Actuat B-Chem,2005,106(1):335-342.

[19] Logan T C,Clark D S,Stachowiak T B,et al.Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions.Anal Chem,2007,79(17):6592-6598.

[20] Vong T,Schoffelen S,van Dongen S F M.A DNA-based strategy for dynamic positional enzyme immobilization inside fused silica microchannels.Chem Sci,2011,2(7):1278-1285.

[21] Niemeyer C M,Boldt L,Ceyhan B,et al.DNA-directed immobilization: Efficient, reversible, and site-selective surface binding of proteins by means of covalent DNA-streptavidin conjugates.Anal Biochem,1999,268(1):54-63.

[22] Vidotti M,Carvalhal R F,Mendes R K,et al.Biosensors based on gold nanostructures. Journal of the Brazilian Chemical Society,2011,22(1):3-20.

[23] Wilner O I,Weizmann Y,Gill R,et al.Enzyme cascades activated on topologically programmed DNA scaffolds.Nat Nanotechnol,2009,4(4):249-254.

[24] Turkova J.Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function.J Chromatogr B,1999,722(1-2):11-31.

[25] Miyazaki M,Kaneno J,Kohama R,et al.Preparation of functionalized nanostructures on microchannel surface and their use for enzyme microreactors.Chem Eng J,2004,101(1-3):277-284.

[26] Ganesana M,Istarnboulie G,Marty J L,et al.Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors.Biosens Bioelectron,2011,30(1):43-48.

[27] Liu Z Y,Zhang J B,Chen X,et al.Combined biosynthetic pathway for de novo production of UDP-galactose: Catalysis with multiple enzymes immobilized on agarose beads.Chembiochem,2002,3(4):348-355.

[28] Garcia-Galan C,Berenguer-Murcia A,Fernandez-Lafuente R,et al.Potential of different enzyme immobilization strategies to improve enzyme performance.Adv Synth Catal,2011,353(16):2885-2904.

[29] Roessl U,Nahalka J,Nidetzky B. Carrier-free immobilized enzymes for biocatalysis.Biotechnol Lett,2010,32(3):341-350.

[30] Talekar S,Pandharbale A,Ladole M,et al.Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): A tri-enzyme biocatalyst with one pot starch hydrolytic activity.Bioresource Technol,2013,147:269-275.

[31] Ba S,Haroune L,Cruz-Morato C,et al.Synthesis and characterization of combined cross-linked laccase and tyrosinase aggregates transforming acetaminophen as a model phenolic compound in wastewaters.Sci Total Environ,2014,487:748-755.

[32] Schoffelen S,van Hest J C M.Multi-enzyme systems: bringing enzymes together in vitro.Soft Matter,2012,8(6):1736-1746.

[33] Yang H,Wei W,Liu S Q.Monodispersed silica nanoparticles as carrier for co-immobilization of bi-enzyme and its application for glucose biosensing.Spectrochim Acta A,2014,125:183-188.

[34] Zhang H F,Liu R X,Zheng J B.Selective determination of cholesterol based on cholesterol oxidase-alkaline phosphatase bienzyme electrode.Analyst,2012,137(22):5363-5367.

[35] Pal S,Sharma M K,Danielsson B,et al. A miniaturized nanobiosensor for choline analysis.Biosens Bioelectron,2014,54:558-564.

[36] Odaci D,Telefoncu A,Timur S.Maltose biosensing based on co-immobilization of alpha-glucosidase and pyranose oxidase.Bioelectrochemistry,2010,79(1):108-113.

[37] Gonzalez-Pombo P,Farina L,Carrau F,et al.Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases.Food Chem,2014,143:185-191.

[38] Zhao W,Ge P Y,Xu J J,et al.Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase-inhibition biosensor.Environ Sci Technol,2009,43(17):6724-6729.

[1] 胡艳红,龚雪梅,丁柳柳,高嵩,李婷婷. 利用短短芽孢杆菌进行酮还原酶CgKR2的高效表达与纯化 *[J]. 中国生物工程杂志, 2019, 39(8): 59-65.
[2] 封金云,宿玲恰,吴敬. 多酶复配合成海藻糖及其分离提取的研究 *[J]. 中国生物工程杂志, 2019, 39(7): 65-70.
[3] 巩凤芹,刘启顺,谭海东,金花,谭成玉,尹恒. MOFs固定5-羟甲基糠醛氧化酶及其催化活性的研究 *[J]. 中国生物工程杂志, 2019, 39(6): 41-47.
[4] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[5] 刘璐,殷亮,黄飞,张勇,刘倩,冯雁. 利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成 *[J]. 中国生物工程杂志, 2018, 38(7): 75-82.
[6] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[7] 柯霞, 丁冠军, 孙骏, 王露, 郑裕国. VD3羟化酶及其电子传递链的体外构建及活性研究[J]. 中国生物工程杂志, 2016, 36(5): 89-96.
[8] 成采虹, 杜婷, 陈可泉, 李艳. 赖氨酸酰化酶的重组表达及其催化合成ε-月桂酰-L-赖氨酸[J]. 中国生物工程杂志, 2016, 36(2): 62-67.
[9] 马晨露, 唐存多, 史红玲, 王瑞, 岳超, 夏敏, 邬敏辰, 阚云超. 头孢菌素C乙酰化酶的半理性改造及7-ACA的生物合成[J]. 中国生物工程杂志, 2015, 35(12): 65-71.
[10] 唐存多, 史红玲, 唐青海, 焦铸锦, 阚云超, 邬敏辰, 李剑芳. 生物催化剂发现与改造的研究进展[J]. 中国生物工程杂志, 2014, 34(9): 113-121.
[11] 岳昌武, 李园园, 吕玉红, 王苗, 邵美云, 刘明皓, 黄英. 海洋链霉菌Streptomyces olivaceus FXJ7.023来源多功能几丁质酶的克隆、表达及鉴定[J]. 中国生物工程杂志, 2014, 34(8): 47-53.
[12] 刘玉雪, 张祎昕, 王磊, 林心萍, 朱志伟, 赵宗保. 重组酿酒酵母催化二氢大豆苷元生产雌马酚[J]. 中国生物工程杂志, 2014, 34(4): 41-45.
[13] 赵伟睿, 胡升, 黄俊, 梅乐和. 微生物细胞通透性改善方法与策略[J]. 中国生物工程杂志, 2014, 34(3): 125-131.
[14] 曾贞, 杨军方, 杨成丽, 王鹏, 李大力. S-扁桃酸脱氢酶基因的克隆及表达[J]. 中国生物工程杂志, 2012, 32(02): 29-32.
[15] 雷高新,陈勇,许琳,应汉杰. 酿酒酵母中过表达URA5及URA3基因催化合成UMP的初步研究[J]. 中国生物工程杂志, 2008, 28(12): 77-81.