Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (8): 1-10    
研究报告     
前手性酮全细胞转化体系中甲酸脱氢酶C-端无序结构与转化效率的关系研究
李炳娟1,2, 李玉霞1, 李北平1, 凌焱1, 周围1, 刘刚1, 张景海2, 岳俊杰1, 陈惠鹏1
1. 军事医学科学院生物工程研究所 北京 100071;
2. 沈阳药科大学 沈阳 110016
Study of the Relationship between the Disordered C Terminusin of Formate Dehydrogenase and the Conversion Rate in the Whole-cell Catalysis of Prochiral Acetone
LI Bing-juan1,2, LI Yu-xia1, LI Bei-ping1, LING Yan1, ZHOU Wei1, LIU Gang1, ZHANG Jing-hai2, YUE Jun-jie1, CHEN Hui-peng1
1. Beijing Institute of Biotechnology, Beijing 100071, China;
2. Department of Life Science, ShenYang Pharmaceutical University, Shenyang 110016, China
 全文: PDF(1772 KB)   HTML
摘要:

目的: 构建前手性酮类化合物的重组全细胞催化体系,并研究CbFDH C-端无序的11个氨基酸与酶活性的关系。方法:利用基因工程方法构建野生型LbADH ,CbFDH及C-端11个氨基酸缺失的CbFDH截短突变体的表达菌株;SDS-PAGE分析其表达方式及表达量,利用分光光度计法测定全菌破碎上清中的酶活性;将含野生型LbADH及CbFDHΔ354-364的菌株与底物混合孵育,考察双菌全细胞体系的催化效果;并将含野生型CbFDH及CbFDHΔ的菌液分别与含野生型LbADH的菌株混合催化苯乙酮的转化,比较两种菌的协助转化效率。结果: 构建了重组表达载体pETDuet-1-adh,pETDuet-1-fdh及pETDuet-1-fdhΔ354-364,并实现了在大肠杆菌中的异源表达,含野生型LbADH 及CbFDH的两种菌株能够实现苯乙酮的协同转化,转化率为24.4%,产物对映体纯度为96.79% ;CbFDH及CbFDHΔ354-364分别占上清总蛋白的28.54%及37.72%,C-端的缺失未影响CbFDH的可溶性表达,但CbFDHΔ354-364全菌上清催化NAD+转化为还原型NADH的效率降低,为CbFDH粗酶液的29.82%;且重组菌株Rossetta(DE3)-pETDuet-1-fdhΔ354-364与Rossetta(DE3)-pETDuet-1-adh协同转化苯乙酮的转化率降低至8%。结论: 重组菌株Rossetta(DE3)-pETDuet-1-adh与Rossetta(DE3)-pETDuet-1-fdh能够协同催化苯乙酮转化,转化效率为24.4%,产物对映体纯度为96.79%;重组菌株Rossetta(DE3)-pETDuet-1-fdhΔ354-364与Rossetta(DE3)-pETDuet-1-adh协同转化苯乙酮的效率为Rossetta(DE3)-pETDuet-1-fdh与Rossetta(DE3)-pETDuet-1-adh协同转化效率的32.79%,且Rossetta(DE3)-pETDuet-1-fdhΔ354-364全菌上清催化还原型辅酶再生的效率降低,提示C-端无序的11个氨基酸残基对CbFDH酶活性的发挥起着重要的作用。

关键词: 博伊丁假丝酵母甲酸脱氢酶辅酶再生全细胞催化结构改造    
Abstract:

Objective: Construct the whole cell biocatalysis system for the reduction of prochiral carbonyal compounds. And valuate the function of the disordered C terminus in the catalysis of formate dehydrogenase from Candida boidinii. Methods: The recombinant strains for the expression of LbADH ,CbFDH and CbFDHΔ354-364 were constructed by the genetic engineering methods. The expression of recombinant proteins were analyzed by SDS-PAGE, and the activity of the whole soluble proteins was determined photometrically at 340 nm. Rossetta(DE3)-pETDuet-1-adh and Rossetta(DE3)-pETDuet-1-fdh were mixed and incubated with acetophenone, the products were analyzed by high performance liquid chromatography (HPLC). To compare the NADH regeneration rate of Rossetta(DE3)-pETDuet-1-fdhΔ354-364 and Rossetta(DE3)-pETDuet-1-fdh, the two strains were mixed with Rossetta(DE3)-pETDuet-1-adh separately, and incubated with acetophenone, the products were detected timely. Results: The recombinant plasmid pETDuet-1-adh, pETDuet-1-fdh and pETDuet-1-fdhΔ354-364 were constructed correctly. The recombinant proteins LbADH, CbFDH and CbFDHΔ354-364 could be expressed solublely. The two recombinant strains harboring LbADH and CbFDH separately can be used coupled for the asymmetric reduction of acetophenone, the conversion rate reached 24.4% and enantiomeric excess reached 96.79%; the soluble expression of CbFDHΔ354-364 has no significant difference compared with CbFDH, but when using the whole soluble proteins of Rossetta(DE3)-pETDuet-1-fdhΔ354-364 catalyzed the regeneration of NADH, the conversion rate was sharply decreased to 8% when compared with Rossetta(DE3)-pETDuet-1-fdh. Conclusions: The recombinant strains Rossetta(DE3)-pETDuet-1-fdhΔ354-364 and Rossetta(DE3)-pETDuet-1-adh could be used coupled for the reduction of acetophenone, resulted in a chemical yield of 24.4% and an enantiomeric excess of 96.79%. Rossetta(DE3)-pETDuet-1-adh and Rossetta(DE3)-pETDuet-1-fdh were mixed and incubated with acetophenone, the conversion rate was decreased 32.79% compared with Rossetta(DE3)-pETDuet-1-fdh mixed with Rossetta(DE3)-pETDuet-1-adh. The disordered residues in C terminus of CbFDH may play an important role in the catalysis process of CbFDH.

Key words: Candida boidinii    Formate dehydrogenase    Cofactor regeneration    Whole cell biocatalysis    Structure alteration
收稿日期: 2013-05-08 出版日期: 2013-08-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(81000763);国家科技重大专项(2012ZX09301003);国家"973"计划(2009CB52604)资助项目

通讯作者: 陈惠鹏,E-mail:chenhp0909@163.com;凌焱,E-mail:lingyan@bmi.ac.cn     E-mail: chenhp0909@163.com;lingyan@bmi.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李炳娟
李玉霞
李北平
凌焱
周围
刘刚
张景海
岳俊杰
陈惠鹏

引用本文:

李炳娟, 李玉霞, 李北平, 凌焱, 周围, 刘刚, 张景海, 岳俊杰, 陈惠鹏. 前手性酮全细胞转化体系中甲酸脱氢酶C-端无序结构与转化效率的关系研究[J]. 中国生物工程杂志, 2013, 33(8): 1-10.

LI Bing-juan, LI Yu-xia, LI Bei-ping, LING Yan, ZHOU Wei, LIU Gang, ZHANG Jing-hai, YUE Jun-jie, CHEN Hui-peng. Study of the Relationship between the Disordered C Terminusin of Formate Dehydrogenase and the Conversion Rate in the Whole-cell Catalysis of Prochiral Acetone. China Biotechnology, 2013, 33(8): 1-10.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I8/1

[1] Hsu L C, Kim H, Yang X, et al. Large scale chiral chromatography for the separation of an enantiomer to accelerate drug development. Chirality, 2011,23(4):361-366.
[2] Huisman G W, Liang J, Krebber A. Practical chiral alcohol manufacture using ketoreductases. Current Opinion in Chemical Biology, 2010, 14(2):122-129.
[3] Ernst M, Kaup B, Muller M, et al. Enantioselective reduction of carbonyl compounds by whole-cell biotransformation, combining a formate dehydrogenase and a (R)-specific alcohol dehydrogenase. Applied Microbiology and Biotechnology, 2005, 66(6):629-634.
[4] Niefind K, Muller J, Riebel B, et al. The crystal structure of R-specific alcohol dehydrogenase from Lactobacillus brevis suggests the structural basis of its metal dependency. Journal of Molecular Biology, 2003, 327(2):317-328.
[5] Tishkov V I, Popov V O. Catalytic mechanism and application of formate dehydrogenase. Biochemistry Biokhimiia, 2004, 69(11):1252-1267.
[6] Sun Y, Zhang R, Xu Y. Co-expression of formate dehydrogenase from Candida boidinii and (R)-specific carbonyl reductase from Candida parapsilosis CCTCC M203011 in Escherichia coli. Acta Microbiologica Sinica, 2008, 48(12):1629-1633.
[7] Bai Y, Yang S T. Biotransformation of R-2-hydroxy-4-phenylbutyric acid by D-lactate dehydrogenase and Candida boidinii cells containing formate dehydrogenase coimmobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering, 2005, 92(2):137-146.
[8] Nilov D K, Shabalin I G, Popov V O, et al. Molecular modeling of formate dehydrogenase: the formation of the Michaelis complex. Journal of Biomolecular Structure & Dynamics, 2012, 30(2):170-179.
[9] Madje K, Schmolzer K, Nidetzky B, et al. Host cell and expression engineering for development of an E. coli ketoreductase catalyst: enhancement of formate dehydrogenase activity for regeneration of NADH. Microbial Cell Factories, 2012, 11:7.
[10] Kratzer R, Pukl M, Egger S, et al. Whole-cell bioreduction of aromatic alpha-keto esters using Candida tenuis xylose reductase and Candida boidinii formate dehydrogenase co-expressed in Escherichia coli. Microbial Cell Factories, 2008, 7:37.
[11] Tishkov V I, Popov V O. Protein engineering of formate dehydrogenase. Biomolecular Engineering, 2006, 23(2-3):89-110.
[12] 吴希, 张翀, 邢新会. 手性醇脱氢酶与甲酸脱氢酶的融合蛋白体系的构建. 化工学报, 2009,60(10):2562-2567. Wu X, Zhang C, Xing X H. Construction of fusion protein systems consisting of a chiral alcohol dehydrogenase and a formate dehydrogenase. CIESC Journal, 2009,60(10):2562-2567.
[13] Schirwitz K, Schmidt A, Lamzin V S. High-resolution structures of formate dehydrogenase from Candida boidinii. Protein Science: A Publication of the Protein Society, 2007, 16(6):1146-1156.
[14] Caccamese S, Caruso C, Parrinello N, et al. High-performance liquid chromatographic separation and chiroptical properties of the enantiomers of naringenin and other flavanones. Journal of Chromatography A, 2005, 1076(1-2):155-162.
[15] Hoelsch K, Suhrer I, Heusel M, et al. Engineering of formate dehydrogenase: synergistic effect of mutations affecting cofactor specificity and chemical stability. Applied Microbiology and Biotechnology, 2013, 97(6):2473-2481.
[16] Alekseeva A A, Serenko A A, Kargov I S, et al. Engineering catalytic properties and thermal stability of plant formate dehydrogenase by single-point mutations. Protein Engineering, Design & Selection, 2012, 25(11):781-788.

[1] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[2] 李检秀,陈先锐,陈小玲,黄艳燕,莫棋文,谢能中,黄日波. 应用合成生物学策略构建全细胞生物催化剂合成(S)-乙偶姻 *[J]. 中国生物工程杂志, 2019, 39(4): 60-68.
[3] 王越,李江华,堵国成,刘龙. L-氨基酸脱氨酶的分子改造及其用于全细胞催化法生产α-酮戊二酸条件的优化 *[J]. 中国生物工程杂志, 2019, 39(3): 56-64.
[4] 刘璐,殷亮,黄飞,张勇,刘倩,冯雁. 利用SpyTag/SpyCatcher构建胞内自组装多酶复合体实现高效生物合成 *[J]. 中国生物工程杂志, 2018, 38(7): 75-82.
[5] 陈圣, 李艳, 刘欢, 严明, 许琳. 生物法合成尿苷二磷酸葡萄糖的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 125-130.
[6] 李小冬, 杨娜, 万永虎, 吴嘉, 贾东晨, 乔敏. 表面展示工程在酒精发酵方面的应用[J]. 中国生物工程杂志, 2012, 32(08): 107-110.
[7] 郑晖 李秋顺 高广恒 张利群 马耀宏 史建国. 脱氢酶生物传感器研究关键技术与进展[J]. 中国生物工程杂志, 2010, 30(09): 118-123.
[8] 梅岩 陈丽梅. 植物甲酸脱氢酶基因的表达调控及其生理功能研究进展[J]. 中国生物工程杂志, 2010, 30(05): 133-139.
[9] 郭明 胡昌华. 生物转化—从全细胞催化到代谢工程[J]. 中国生物工程杂志, 2010, 30(04): 110-115.
[10] 刘文山,闫云君. 脂肪酶的表面展示及其应用[J]. 中国生物工程杂志, 2007, 27(9): 97-102.