Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (4): 80-84    
研究报告     
大豆油酸脱氢酶基因启动子的克隆及其表达活性分析
赵艳1, 沙伟1, 张梅娟1, 杨晓杰1, 范震宇1, 王艳梅2
1. 齐齐哈尔大学 生命科学与农林学院 齐齐哈尔 161000;
2. 齐齐哈尔市龙沙公园 齐齐哈尔 161006
Cloning and Activity Analysis of Soybean FAD2-1B Promoter
ZHAO Yan1, SHA Wei1, ZHANG Mei-juan1, YANG Xiao-jie1, FAN Zhen-yu1, WANG Yan-mei2
1. College of Life Science and Agroforestry, Qiqihaer University, Qiqihaer 161000, China;
2. LongSha Park of Qigihar City, Qiqihaer 161006, China
 全文: PDF(435 KB)   HTML
摘要: 大豆油酸脱氢酶(FAD2-1B)基因是种子特异表达基因,利用PCR方法从大豆基因组DNA中分离FAD2-1B 基因的启动子片段,命名为FP。PLACE在线启动子预测工具分析表明:序列中含有多种典型的种子特异性表达元件, 如Skn-1 motif、AACACA、SEF4 motif、E-box、ACGT等。将克隆得到的FP片段替换pCAMBIA1301中的CaMV35S 启动子,构建表达载体pCAM-FP。通过农杆菌介导法在大豆各组织中进行瞬时表达,GUS组织化学染色显示FP驱动GUS基因在大豆根、茎、叶中基本不表达,在种子中有较高的表达活性,推测FP启动子具有种子特异表达活性。
关键词: 大豆油酸脱氢酶基因启动子瞬时表达    
Abstract: The soybean oleate desaturase gene(FAD2-1B ) has previously been shown to be expressed specifically in soybean seeds. The 5'-flanking upstream sequence of FAD2-1B gene, named FP, was isolated from the genomic DNA of soybean by PCR method. Sequence analysis by PLACE revealed that this fragment contains a series of motifs related to seed-specific promoters, such as Skn-1 motif,AACACA,SEF4 motif,E-box,ACGT. Replacing CaMV35S promoter of pCAMBIA1301 with FP fragment, the binary expression vector pCAM-FP was constructed. Transient expression in soybean tissues by Agrobacterium tumefaciens mediated method, the results of histochemical GUS analysis showed that there were little or not GUS activities in roots, stems and leaves, but there was higher activity in soybean seeds. It is inferred that FP promoter possess the function driven downstream gene expression exclusively in soybean seeds.
Key words: Soybean    FAD2-1B    Promoter    Transient expression
收稿日期: 2012-10-12 出版日期: 2013-04-25
ZTFLH:  Q786  
基金资助: 黑龙江省教育厅科学技术研究资助项目(12521611)
通讯作者: 赵艳     E-mail: zhaoyan3053877@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵艳
沙伟
张梅娟
杨晓杰
范震宇
王艳梅

引用本文:

赵艳, 沙伟, 张梅娟, 杨晓杰, 范震宇, 王艳梅. 大豆油酸脱氢酶基因启动子的克隆及其表达活性分析[J]. 中国生物工程杂志, 2013, 33(4): 80-84.

ZHAO Yan, SHA Wei, ZHANG Mei-juan, YANG Xiao-jie, FAN Zhen-yu, WANG Yan-mei. Cloning and Activity Analysis of Soybean FAD2-1B Promoter. China Biotechnology, 2013, 33(4): 80-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I4/80

[1] 肖钢, 张宏军, 彭琪等. 甘蓝型油菜油酸脱氢酶基因(fad2)多个拷贝的发现及分析. 作物学报, 2008, 34(9): 1563-1568. Xiao G, Zhang H J, Peng Q, et al. Screening and analysis of mutiple copy of oleate desaturase gene (fad2) in Brassica napus.Acta Agronomica Sinica,2008, 34(9): 1563-1568.
[2] Chen W, Song K, Cai Y R, et al. Genetic modification of soybean with a novel grafting technique: downregulating the FAD2-1 gene increases oleic acid content. Plant Mol Biol Rep, 2011, 29: 866-874.
[3] Sandhu D, Alt J L, Scherder C W, et al. Enhanced oleic acid content in the soybean mutant M23 is associated with the deletion in the Fad2-1a gene encoding a fatty acid desaturase. J Amer Oil Chem Soc, 2007, 84(3): 229-235.
[4] Chi X Y, Yang Q L, Pan L J, et al. Isolation and characterization of fatty acid desaturase genes from peanut (Arachis hypogaea L.). Plant Cell Rep, 2011, 30(8): 1393-1404.
[5] Jung J H, Kim H J, Go Y S, et al. Identi?cation of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep, 2011, 30(10): 1881-1892.
[6] Li L Y, Wang X L, Gai J Y, et al. Molecular cloning and characterization of a novel microsomal oleate desaturase gene from soybean. J Plant Physiol, 2007, 164(11): 1516-1526.
[7] Li L, Wang X, Gai J, et al. Isolation and characterization of a seed-specific isoform of microsomal omega-6 fatty acid desaturase gene (FAD2-1B) from soybean. DNA Sequence, 2008, 19(1): 28-36.
[8] Xiao Y H, Luo M, Fang W G, et al. PCR walking in cotton genome using YADE method. Acta Genet Sin, 2002, 29(1): 62-66.
[9] Hu X W, Liu S X, Guo J C, et al. Embryo and anther regulation of the mabinlin Ⅱ sweet protein gene in Capparis masaikai Levl. Funct Integr Genomics, 2009, 9(3): 351-361.
[10] Jefferson R A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep, 1987, 5 (4): 387-405.
[11] Tamar J G, Hsu J Y, Theisen J W, et al. The RNA polymerase II core promoter--the gateway to transcription. Curr Opin Cell Biol, 2008, 20(3): 253-259.
[12] Wu C Y, Washida H, Onodera Y, et al. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: Minimal cis-element requirements for endosperm-specific gene expression. Plant J, 2000, 23(3): 415-421.
[13] Fauteux F, Stromvik M V. Seed storage protein gene promoters contain conserved DNA motifs in Brassicaceae, Fabaceae and Poaceae. BMC Plant Biol, 2009, 9:126.
[14] Kim M J, Kim J K, Shin J S, et al. The SebHLH transcription factor mediates trans-activation of the SeFAD2 gene promoter through binding to E-and G-box elementsv. Plant Mol Biol, 2007, 64 (4): 453-466.
[15] Chung K J, Hwang S K, Hahn B S, et al. Authentic seed-specific activity of the Perilla oleosin 19 gene promoter in transgenic Arabidopsis. Plant Cell Rep, 2008, 27(1): 29-37.
[16] Luo K, Zhang G F, Deng W, et al. Functional characterization of a cotton late embryogenesis-abundant D113 gene promoter in transgenic tobacco. Plant Cell Rep, 2008, 27(4):707-717.
[17] Gao M J, Lydiate D J, Li X, et al. Repression of seed maturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. The Plant Cell, 2009, 21(1):54-71.
[18] Chamberland S, Daigle N, Bernier F. The legumin boxes and the 3' part of a soybean beta-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants. Plant Mol Biol, 1992, 19 (6): 937-949.
[19] Nagano Y, Furuhashi H, Inaba T, et al. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences. Nucheic Acids Res, 2001, 29(20): 4097-4105.
[20] 李吉涛, 郭建春. 种子特异性启动子的研究进展. 安徽农业科学, 2008, 36(4): 1382-1385. Li J T, Guo J C. Advances in studies of seed-specific promoters.Journal of Anhui Agri Sci, 2008, 36(4): 1382-1385.
[21] Zhang Y J, Li L, Song Y R. Identification of seed-specifc promoter nap300 and its comparison with 7S promoter. Prog Nat Sci, 2002, 12(10): 737-741.
[22] Wu C Y, Suzuki A, Washida H, et al. The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J, 1998,14(6):673-683.
[1] 杨茜,栾雨时. sly-miR399在番茄抗晚疫病中的初步探究*[J]. 中国生物工程杂志, 2021, 41(11): 23-31.
[2] 卜恺璇,周翠霞,路福平,朱传合. 细菌转录起始调控机制*[J]. 中国生物工程杂志, 2021, 41(11): 89-99.
[3] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[4] 玄美娟,张晓云,高莹,高丽影,吴佳婧,马梅,王艳梅,寇航,路福平,黎明. 大肠杆菌糖酵解途径和三羧酸循环启动子的表征及其应用 *[J]. 中国生物工程杂志, 2020, 40(6): 20-30.
[5] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[6] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[7] 史超硕,李登科,曹雪,袁航,张钰文,于江悦,路福平,李玉. 两个不同启动子及其组合对碱性蛋白酶AprE异源表达的影响 *[J]. 中国生物工程杂志, 2019, 39(10): 17-23.
[8] 黄宇,黄书婷,张夕梅,刘堰. 稀有鮈鲫HSP70基因启动子的克隆及功能分析[J]. 中国生物工程杂志, 2019, 39(10): 9-16.
[9] 李亚芳,赵颖慧,刘赛宝,王伟,曾为俊,王金泉,陈洪岩,孟庆文. 鸡OV启动子表达HA对禽流感病毒攻击提供完全保护 *[J]. 中国生物工程杂志, 2018, 38(7): 67-74.
[10] 王嘉祯,姚伦广,王峰,阚云超,罗金萍,黄倩倩,段建平. 家蚕中肠特异启动子P56的克隆及活性分析 *[J]. 中国生物工程杂志, 2018, 38(2): 13-17.
[11] 王友华,蔡晶晶,杨明,张恬,任红梅,邹婉浓,孙国庆. 全球转基因大豆专利信息分析与技术展望[J]. 中国生物工程杂志, 2018, 38(2): 116-125.
[12] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[13] 黄鹏,阎丽萍,张宁,石金磊. 利用GAP启动子在毕赤酵母中组成型表达人鹅型溶菌酶2 *[J]. 中国生物工程杂志, 2018, 38(10): 55-63.
[14] 柴文娟,杨杞,李国婧,王瑞刚. 中间锦鸡儿CiMYB15基因正调控拟南芥黄酮代谢 *[J]. 中国生物工程杂志, 2018, 38(10): 8-19.
[15] 聂永强, 马海燕, 马晴雯. 位点特异整合微环DNA的体内制备[J]. 中国生物工程杂志, 2017, 37(7): 80-87.