Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (6): 104-108    
综述     
提高哺乳动物工程细胞抗凋亡能力的基因策略
徐洪记, 张兵兵
重庆大学生物工程学院 重庆 400044 重庆大学生物流变科学与技术教育部重点实验室 重庆 400044
Gene Strategies of Enhancing the Anti-apoptosis Ability of Mammalian Cell in Engineering
XU Hong-ji, ZHANG Bing-bing
Bioengineering College, Chongqing University, Chongqing 400030, China) (Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing 400030, China
 全文: PDF(357 KB)   HTML
摘要: 利用哺乳动物细胞发酵生产重组蛋白药物具有细菌、酵母等表达系统所不具备的显著优势,因此在生物制药工程中的重要性越来越突出。哺乳动物细胞对工业生产环境下的各种应激环境耐受能力差,易发生细胞凋亡,严重阻碍了大规模生产,降低了生产效率。细胞凋亡是细胞必经的生物学过程,随着对凋亡机制的深入了解,发展出各种抗凋亡策略,并有望应用于重构更适合工业生产的工程细胞。常用的抗凋亡策略包括:下调凋亡蛋白、上调抗凋亡蛋白、增强生长因子自表达、减少有毒代谢产物生成等。以上策略虽然能在一定程度上提高细胞的抗凋亡能力,但距离满足生产的工程细胞重构还有距离,围绕提高工程细胞的抗凋亡能力,已发展出"凋亡工程"这一重要的技术领域。
关键词: 细胞工程抗凋亡哺乳动物细胞    
Abstract: Mammalian cells have significant advantages in producing recombinant protein drugs, which make it widely used in industry. In the process of production, however, environmental stress, which can result from nutrient depletion and by-product accumulation, activates apoptosis through signalling cascades regulators. It is the burden of improving the protein production that have the cell more susceptible to apoptosis, decreasing bioreactor performance and hindering large-scale production. Therefore,apoptosis, programed cell death, seriously limits the recombinant protein production, and how to improve the anti-apoptotic ability of engineering cells has accordingly become a hot point that attracted the attention of biologists all over the world. Apoptosis, as well as proliferation and differentiation, is one of the biological processes that cell must experience. With the understanding of the mechanism of apoptosis and revealing of many apoptosis genes in previous studies, a variety of anti-apoptotic approaches were found which is helpful to inhibit apoptosis and to enhance the robustness, survival and productivity of production cell lines. The anti-apoptotic approaches commonly used in engineering include: lowering apoptotic proteins, increasing anti-apoptotic proteins, over-expressing growth factor and insuin-like growth factor and modifying the intracellular enzyme related to metabolism in order to prevent the toxic metabolites from accumulating. Although the resistance of cell to apoptosis were, to some extent, improved by the strategies mentioned above, it is very essential for biotechnologists to search for more effective anti-apoptotic approaches that could lead to the greatest improvements in cell survival, provide unequalled bioreactor performance and enhance biopharmaceutical productivities.
Key words: Cell engineering    Anti-apoptosis    Mammalian cell
收稿日期: 2012-03-28 出版日期: 2012-06-25
ZTFLH:  Q819  
基金资助: 重庆市自然科学基金资助项目(CSTC2010BB5225)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张兵兵
徐洪记

引用本文:

徐洪记, 张兵兵. 提高哺乳动物工程细胞抗凋亡能力的基因策略[J]. 中国生物工程杂志, 2012, 32(6): 104-108.

XU Hong-ji, ZHANG Bing-bing. Gene Strategies of Enhancing the Anti-apoptosis Ability of Mammalian Cell in Engineering. China Biotechnology, 2012, 32(6): 104-108.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I6/104

[1] Walsh G. Biopharmaceutical benchmarks 2010. Nature Biotechnology,2010,28(9):917-924.
[2] Krampe B,Al-Rubeai M. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology,2010,62(2010):175-188.
[3] Liew J C,Tan W S,Mohamed Alitheen N B,et al.Over-expression of the X-linked inhibitor of apoptosis protein (XIAP) delays serum deprivation-induced apoptosis in CHO-K1 cells.Journal of Bioscience and Bioengi -neering,2010,110 (3):338-344.
[4] Sauerwald T M,Oyler G A,Betenbaugh M J. Study of caspase inhibitors for limiting death in mammalian cell culture.Biotechnology and Bioengineering,2003,81(3):329-340.
[5] 来大志. CHO表达系统的遗传改造.北京:北京微生物流行病研究所,2003. Lai D Z. Genetic modification of the CHO expression system.Beijing:Beijing Institute of Microbiology Epidemiology,2003.
[6] Sung Y H,Hwang S J,Lee G M. Infuence of downregulation of caspase-3 by siRNAs on sodium-butyrate- induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin.Metabolic Engineering,2005,7(5-6):457-666.
[7] Sung Y H,Lee J S,Park S H, et al. Influence of co-down-regulation of caspase-3 and caspase-7 by siRNAs on sodium butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin.Meta -bolic Engineering,2007,9(5-6):452-464.
[8] Tey B T,Singh R P,Piredda L,et al.Bcl-2 mediated suppression of apoptosis in myeloma NS0 culture. Journal of Biotechnology,2000,79:147-159.
[9] Kim N S,Lee G M. Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese Hamster Ovary cells resulting in enhanced humanized antibody production. Biotechnology and Bioengineering,2001,71(3):184-193.
[10] Figueroa B,Sauerwald T M,Oyler G A,et al. A comparison of the properties of a Bcl-xL variant to the wild-type anti-apoptosis inhibitor in mammalian cell cultures.Metabolic Engineering,2003,5:230-245.
[11] Chao D T,Linette G P,Boise L H,et al. Bcl-xL and Bcl-2 repress a common pathway of cell death. Journal of Experimental Medicine,1995,182(3):821-828.
[12] Lim S F,Chuan K H,Liu S,et al.RNAi suppression of Bax and Bak enhances viability in fed-batch culture of CHO cells.Metabolic Engineering,2006,8:509-522.
[13] Cost G J,Freyvert Y,Vaiadis A,et al. Bak and Bax deletion using zinc-finger nucleases yields apoptosis -resistant CHO cells. Biotechnology and Bioengineering,2009,105(2):330-340.
[14] Dietmair S,Nielsen L K,Timmins N E.Engineering a mammalian super producer.Journal of Chemical Tech -nology & Biotechnology,2011,86:905-914.
[15] Huang D C,Cory S,Strasser A. Bcl-2, Bcl-xL and adenovirus protein E1B-19kD are functionally equivale -nt in their ability to inhibit cell death.Oncogene,1997,14(4):405-414.
[16] Nivitchanyong T,Martinez A,Ishaque A,et al. Anti-apoptotic genes Aven and E1B-19K enhance performa -nce of BHK cells engineered to express recombinant factor VIII in batch and low perfusion cell culture.Biotech -nology and Bioengineering,2007,98(4):825-841.
[17] Galluzzi L,Brenner C,Morselli E,et al. Viral control of mitochondrial apoptosis. PLos Pathogen,2008,4(5):1-16.
[18] Vives J,Juanola S,Cairo J J,et al.Protective effect of viral homologues of Bcl-2 on Hybridoma cells under apoptosis-inducing conditions.Biotechnology Progress,2003,19(1):84-89.
[19] Jung D,Cote S,Drouin M,et al. Inducible expression of Bcl-xL restricts apoptosis resistance to the antibod -y secretion phase in hybirdoma cultures. Biotechnology and Bioengineering,2002,79(2):180-187.
[20] Subramanian T,Tarodi B,Chinnadurai G. p53-independent apoptotic and necrotic cell deaths induced by adenovirus infection: suppression by ElB19K and BcI-2 proteins. Cell Growth & Differentiation,1995,6:131-137.
[21] Vives J,Juanola S,Cairo J J,et al. Metabolic engineering of apoptosis in cultured animal cells: implications for the biotechnology industry.Metabolic Engineering,2003,5:124-132.
[22] Dorai H,Kyung Y S,Ellis D,et al. Expression of anti-apoptosis genes alters lactate metabolism of Chinese hamster ovary cells in culture.Biotechnology and Bioengineering,2009,103(3):592-608.
[23] Bruno F J,Chen S L,Oyler G A,et al.Aven and Bcl-xL enhance protection against apoptosis for mammalia -n cells exposed to various culture conditions.Biotechnology and Bioengineering,2004,85(6):589-600.
[24] Sunstrom N S,Gay R D,Wong D C,et al.Insulin-like growth factor-I and transferrin mediate growth and survival of Chinese hamster ovary cells.Biotechnology Progress,2000,16:698-702.
[25] Suntrorn N A,Hunt S. Regulated autocrine growth of CHO cells.Cytotechnology,2000,34:39-46.
[26] Chen K,Liu Q,Xie L,et al.Engineering of a mammalian cell line for reduction of lactate formation and high monoclonal antibody production.Biotechnology Bioengineering,2001,72(1):55-61.
[27] Jeong D W,Kim T S,Lee J W,et al. Blocking of acidosis-mediated apoptosis by a reduction of lactate dehydr -ogenase activity through antisensemRNA expression. Biochemical and Biophysical Research Communication, 2001,289(5):1141-1149.
[28] Jeong D W,Kim T S,Cho I T,et al. Modification of glycolysis affects cell sensitivity to apoptosis induced by oxidative stress and mediated by mitochondria. Biochemical and Biophysical Research Communications 200 4,313(4):984-991.
[29] Kim S H,Lee G M. Down-regulation of lactate dehydrogenase-A by siRNAs for reduced lactic acid formation of Chinese hamster ovary cells producing thrombopoietin.Appl Microbiol Biotechnol,2007,74:152-159.
[30] Bebinton C R,Renner G,Thomson S,et al.High-Ievel expression of a recombinant antibody from myelom -a cell using a glutamine synthestase gene as an amplifiable selectable marker. Nature Biotechnology,1992,10: 169-175.
[31] 来大志,付玲,于长明,等.用于生产重组蛋白药物的抗凋亡CHO宿主细胞株的建立.生物工程学报,2003,19(3):323-326. Lai D Z,Fu L,Yu C M,et al.Construction of an anti-apoptosis CHO cell line for biopharmaceutical production.Chinese Journal of Biotechnology,2003,19(3):323-326.
[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 苏爽,金永杰,黄瑞晶,李剑,徐寒梅. 哺乳动物细胞灌流培养工艺研究进展[J]. 中国生物工程杂志, 2019, 39(3): 105-110.
[3] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[4] 惠开元, 高向东, 徐晨. 单克隆抗体制备的细胞工程学研究进展[J]. 中国生物工程杂志, 2012, 32(02): 90-95.
[5] 刁勇. 仅基于RNA元件构建可诱导哺乳动物细胞基因表达的调控系统[J]. 中国生物工程杂志, 2011, 31(12): 120-125.
[6] 杨晖, 郭琪, 赵长崎, 周剑平. 珍稀药用植物桃儿七细胞工程及内生菌研究进展[J]. 中国生物工程杂志, 2010, 30(11): 94-99.
[7] 彭伍平 仇华吉 . 重组杆状病毒:一种新型哺乳动物细胞基因转移载体[J]. 中国生物工程杂志, 2007, 27(1): 126-130.
[8] 杨海,李世崇,陈昭烈. 外源基因高表达细胞株的高通量分选方法[J]. 中国生物工程杂志, 2006, 26(0): 186-190.
[9] 修梅红, 彭建新, 洪华珠. 杆状病毒p35蛋白抗凋亡作用及机理[J]. 中国生物工程杂志, 2003, 23(5): 60-63.
[10] 戴继勋. 用细胞工程技术发展我国的紫菜养殖业[J]. 中国生物工程杂志, 2000, 20(6): 3-4.
[11] 何光存. 细胞工程与分子生物学相结合——野生稻优异种质资源利用的有效途径[J]. 中国生物工程杂志, 1998, 18(2): 41-45,40.
[12] 周百成, 曾呈奎. 藻类生物技术与海洋产业发展[J]. 中国生物工程杂志, 1996, 16(6): 13-16.
[13] 徐庆毅. 我国生物技术发展的回顾与展望[J]. 中国生物工程杂志, 1996, 16(1): 1-5.
[14] 徐宏武. 现代生物高技术的企业特点与质量管理[J]. 中国生物工程杂志, 1995, 15(5): 8-12.
[15] 康毅滨, 吴晓晖, 魏勇, 柴建华. 哺乳动物人工染色体MAC-基因治疗的新载体[J]. 中国生物工程杂志, 1995, 15(4): 18-21.