Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (11): 11-17    
研究报告     
人β2-glycoprotein I及其第V结构域蛋白的原核表达、纯化和活性鉴定
王贺, 迟彦, 王仁军, 李文哲, 马艳华, 李敬达, 刘庆平
大连大学生命科学与技术学院 生物有机化学重点实验室 大连 116622
Expression, Purification and Activity Identification of Human β2-Glycoprotein I and Domain V
WANG He, CHI Yan, WANG Ren-jun, LI Wen-zhe, MA Yan-hua, LI Jing-da, LIU Qing-ping
Key Laboratory of Bio-organic Chemistry, College of Life Science and Technology, Dalian University, Dalian 116622, China
 全文: PDF(537 KB)   HTML
摘要:

目的:旨在重组表达人源β2-GPI及其第V结构域基因,探讨后者在抗自身免疫性动脉粥样硬化实验中的干预作用。方法:以实验室保存的CTA727-1重组质粒为模板克隆β2-GPI及其第V结构域基因,构建pET32-β2-GPI和pET32-DV重组表达载体,分别转化至大肠杆菌Rosetta-gami。经IPTG诱导表达,镍离子亲和层析柱纯化重组蛋白,并采用Western blot、HPTLC和ELISA方法验证了重组蛋白的活性与功能。结果:β2-GPI及其第V结构域目的基因被分别克隆至原核表达载体pET-32a-c(+),诱导出具备CL和oxLig-1结合活性的β2-GPI 及第V结构域融合蛋白,ELISA实验显示第V结构域融合蛋白可抑制oxLig-1/(r)β2-GPI/Antibody免疫复合物的形成。结论:成功构建了pET32-β2-GPI及pET32-DV表达载体,获得高水平表达且具备活性的β2-GPI 和第V结构域重组蛋白,为研究治疗动脉粥样硬化等疾病的多肽药物奠定了基础。

关键词: β2-GPIβ2-GPI及第V结构域原核表达动脉粥样硬化    
Abstract:

Objective: To express and purify the recombinant proteins of human β2-glycoprotein I (β2-GPI) and β2-GPI Domain V in E.coli. Methods: The plasmid CTA727-1 kept by our laboratory which contained the target DNA of β2-GPI and Domain V was used as template. The recombinant plasmids pET32-β2-GPI and pET32-DV were constructed and transformed into E.coli Rosetta-gami cells respectively. The recombinant proteins were induced by Isopropyl β-D-1-thiogalactopyranoside (IPTG) and purified by HisTrap affinity column and then identified by Western blot, high-performance thin-layer chromatography immunostaining assay (HPTLC) and enzyme-linked immunosorbent assay (ELISA). Results: The target DNA fragments of β2-GPI and Domain V were inserted into prokaryotic expression vector pET-32a-c(+) respectively. The recombinant proteins were successfully expressed in E.coli. Furthermore, HPTLC showed that the binding activities of the recombinant proteins of β2-GPI and Domain V to CL and 7-ketochorestery-9-caboxynonanoate (oxLig-1) were similar to that of human β2-GPI. ELISA analysis illustrated the recombinant protein of Domain V competitively inhibits the formation of oxLig-1/(r) β2-GPI/Antibody immune complex. Conclusion: The high level expression of β2-GPI and Domain V were induced in E.coli expressing system and the purified proteins with activity were obtained which could lay the foundation for further research on functions of making drugs against arteriosclerosis.

Key words: β2-GPI    β2-GPI Domain V    Prokaryotic expression    Arteriosclerosis
收稿日期: 2011-07-06 出版日期: 2011-11-25
ZTFLH:  Q786  
基金资助:

国家自然科学基金资助项目(30371380,30571733)

通讯作者: 刘庆平     E-mail: qingpingliu40@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王贺, 迟彦, 王仁军, 李文哲, 马艳华, 李敬达, 刘庆平. 人β2-glycoprotein I及其第V结构域蛋白的原核表达、纯化和活性鉴定[J]. 中国生物工程杂志, 2011, 31(11): 11-17.

WANG He, CHI Yan, WANG Ren-jun, LI Wen-zhe, MA Yan-hua, LI Jing-da, LIU Qing-ping. Expression, Purification and Activity Identification of Human β2-Glycoprotein I and Domain V. China Biotechnology, 2011, 31(11): 11-17.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I11/11


[1] Lusis A J. Atherosclerosis. Nature, 2000, 407(6801): 233-241.

[2] Itabe H. Oxidative Modification of LDL: Its Pathological Role in Atherosclerosis. Clinical reviews in allergy & immunology, 2009, 37(1): 4-11.

[3] Lopez L R, Kobayashi K, Matsunami Y, et al. Immunogenic Oxidized Low-density Lipoprotein/beta2-glycoprotein I Complexes in the Diagnostic Management of Atherosclerosis. Clinical reviews in allergy & immunology, 2009, 37(1): 12-19.

[4] Kobayashi K, Kishi M, Atsumi T, et al. Circulating oxidized LDL forms complexes with beta2-glycoprotein I: implication as an atherogenic autoantigen. Journal of lipid research, 2003, 44(4): 716-726.

[5] Lopez D. IgGAutoantibodies against b2-Glycoprotein I Complexed with a Lipid Ligand Derived from Oxidized Low-Density Lipoprotein are Associated with Arterial Thrombosis in Antiphospholipid Syndrome. Clinical and Developmental Immunology, 2003, 10(2-4): 203-211.

[6] Matsuura E, Kobayashi K, Tabuchi M, et al. Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Progress in lipid research, 2006, 45(6): 466-486.

[7] Matsuura E, Kobayashi K, Matsunami Y, et al. The immunology of atherothrombosis in the antiphospholipid syndrome: antigen presentation and lipid intracellular accumulation. Autoimmunity reviews, 2009, 8(6): 500-505.

[8] Okkels H, Rasmussen T E, Sanghera D K, et al. Structure of the human beta2-glycoprotein I (apolipoprotein H) gene. European journal of biochemistry/FEBS, 1999, 259(1-2): 435-440.

[9] Ioannou Y, Pericleous C, Giles I, et al. Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta(2)-glycoprotein I: mutation studies including residues R39 to R43. Arthritis and rheumatism, 2007, 56(1): 280-290.

[10] George J, Gilburd B, Hojnik M, et al. Target recognition of beta2-glycoprotein I (beta2GPI)-dependent anticardiolipin antibodies: evidence for involvement of the fourth domain of beta2 GPI in antibody binding. J Immunol, 1998, 160(8): 3917-3923.

[11] Igarashi M, Matsuura E, Igarashi Y, et al. Human beta2-glycoprotein I as an anticardiolipin cofactor determined using mutants expressed by a baculovirus system. Blood, 1996, 87(8): 3262-3270.

[12] Hunt J, Krilis S. The fifth domain of beta 2-glycoprotein I contains a phospholipid binding site (Cys281-Cys288) and a region recognized by anticardiolipin antibodies. J Immunol, 1994, 152(2): 653-659.

[13] Matsuura E, Kasahara H, Kaihara K, et al. Antigenic structures recognized by anti-beta2-glycoprotein I auto-antibodies. Int Immunol, 2005, 17(12): 1533-1542.

[14] Matsuura E, Lopez L R. Are oxidized LDL/beta2-glycoprotein I complexes pathogenic antigens in autoimmune-mediated atherosclerosis? Clinical & developmental immunology, 2004, 11(2): 103-111.

[15] Matsuura E, Hughes G R, Khamashta M A. Oxidation of LDL and its clinical implication. Autoimmunity reviews, 2008, 7(7): 558-566.

[16] Liu Q, Kobayashi K, Furukawa J, et al. Omega-carboxyl variants of 7-ketocholesteryl esters are ligands for beta(2)-glycoprotein I and mediate antibody-dependent uptake of oxidized LDL by macrophages. Journal of lipid research, 2002, 43(9): 1486-1495.

[17] Kobayashi K, Matsuura E, Liu Q, et al. A specific ligand for beta(2)-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. Journal of lipid research, 2001, 42(5): 697-709.

[18] 刘明, 洪斌, 司书毅. 动脉粥样硬化的靶位: A类清道夫受体. 中国生物工程杂志, 2003, 23(11): 1-6. Liu M, Hong B, Si S Y. China Biotechnology, 2003, 23(11): 1-6.

[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 张磊,唐永凯,李红霞,李建林,徐逾鑫,李迎宾,俞菊华. 促进原核表达蛋白可溶性的研究进展 *[J]. 中国生物工程杂志, 2021, 41(2/3): 138-149.
[3] 张潇航,李媛媛,贾敏晅,顾奇. 弹性蛋白样生物材料的制备及性质鉴定 *[J]. 中国生物工程杂志, 2020, 40(8): 33-40.
[4] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[5] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[6] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[7] 杨隆兵,国果,马慧玲,李妍,赵欣宇,苏佩佩,张勇. 家蝇抗菌肽AMPs17蛋白原核表达条件的优化及其抗真菌活性检测 *[J]. 中国生物工程杂志, 2019, 39(4): 24-31.
[8] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[9] 陈远侨,龙定沛,豆晓雪,祁润,赵爱春. ELP30-tag蛋白纯化能力的原核表达研究[J]. 中国生物工程杂志, 2018, 38(2): 54-60.
[10] 何亚南,孙钰椋,任雅坤,梁盛英,杨芬,刘彦礼,林俊堂. 金黄色葡萄球菌类肠毒素K与GFP融合蛋白工程菌的构建及其表达蛋白生物学活性分析 *[J]. 中国生物工程杂志, 2018, 38(12): 14-20.
[11] 任建委,李军,李尚泽. 人源CT55蛋白原核表达及单克隆抗体的制备 *[J]. 中国生物工程杂志, 2018, 38(11): 1-8.
[12] 孙文佳, 姚宇峰, 杨旭, 黄惟巍, 刘存宝, 龙琼, 褚晓杰, 马雁冰. 乙肝核心抗原病毒样颗粒呈现HPV 16L1抗原表位及特异抗体诱导[J]. 中国生物工程杂志, 2017, 37(3): 58-64.
[13] 祖力皮也·吐尔逊, 曹春宝, 温浩, 丁剑冰, 德力夏提·依米提. 细粒棘球蚴EgG1Y162基因进化分析、表达及鉴定[J]. 中国生物工程杂志, 2016, 36(4): 78-87.
[14] 周亮, 叶浩, 周瓅, 关文, 李京敬, 郜尽, 韩伟, 俞雁. 人CXCL4蛋白原核表达与纯化[J]. 中国生物工程杂志, 2016, 36(1): 7-13.
[15] 黄健, 黄美容, 朱杰华, 骆诗露, 闵迅. 肺炎链球菌SP0306蛋白的表达纯化及结晶研究[J]. 中国生物工程杂志, 2015, 35(6): 21-25.