Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (06): 46-51    
研究报告     
糖基转移酶基因双敲除对依博素生物合成的影响
白利平1|谢鸿观1|单俊杰2|姜蓉1|张洋1|郭连宏1|李元1
1. 中国医学科学院北京协和医学院医药生物技术研究所卫生部抗生素生物工程重点实验室
2. 军事医学科学院毒物药物研究所
The Effects of Glycosyltransferase Genes Double Disruption in Ebosin Biosynthesis
 全文: PDF(595 KB)   HTML
摘要:

以往研究已确定链霉菌胞外多糖依博素的生物合成基因簇(ste), ste15 和ste22 分别编码葡萄糖糖基转移酶和鼠李糖糖基转移酶。现通过基因同源重组双交换,在ste15基因缺失突变株Streptomyces sp. 139 (ste15-) 基础上,再进行ste22 基因阻断,经Southern 杂交验证,得到了ste15 和ste22 双基因缺失突变株Streptomyces sp. 139 (ste15-ste22-),并对该菌株进行了基因互补研究。双基因缺失株产生的胞外多糖与依博素相比,葡萄糖与鼠李糖含量明显降低,分子量下降,生物活性明显变弱。基因互补株产生的胞外多糖中葡萄糖与鼠李糖含量基本恢复至依博素水平,生物活性也显著提高。因此,进一步阐明了ste15和ste22基因参与了依博素生物合成中葡萄糖和鼠李糖重复单元序列的形成过程,在依博素的生物合成中起重要作用,变株产生的依博素新衍生物体内外生物学活性正在深入研究中。

关键词: 葡葡萄糖糖基转移酶基因;鼠李糖糖基转移酶基因;链霉菌;基因双敲除;依博素新衍生物    
Abstract:

Abstract The biosynthesis cluster (ste) of a novel exololysaccharide called Ebosin producing by Streptomyces had been identified previously. The results showed that the gene products of ste15 and ste22 were glucosyltransferase and rhamnosyltransferase respectively. In this study, the ste22 gene was disrupted with a double crossover via homologous recombination in the mutant strain Streptomyces sp. 139 (ste15 -). The mutant strain Streptomyces sp.139 (ste15 –ste22 -) was identified by Southern blot and gene complementation also performed. Compared with Ebosin, the glucose and rhamnose of EPS15-22m produced by Streptomyces sp.139 (ste15 –ste22 -) were reduced obviously, it’s Mp and the antagonist activity for IL-1R decreased. Glucose, rhamnose and the antagonist activity for IL-1R were recovered in EPS15-22c producing by the gene complemented strain. This study elucidated that genes ste15 and ste22 play essential roles in the formation of repeating units of sugars during Ebosin biosynthesis. The activities of Ebosin new derivatives produced by the mutants have been studied further both in vitro and in vivo.

Key words: the gene encoding glucosyltransferase    the gene encoding rhamnosyltransferase    gene double disruption    Streptomyces    Ebosin new derivatives
收稿日期: 2009-04-09 出版日期: 2009-07-02
ZTFLH:  Q789  
基金资助:

国家自然科学基金重点资助项目

通讯作者: 白利平     E-mail: yuanwli@263.net
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
白利平1
谢鸿观1
单俊杰2
姜蓉1
张洋1
郭连宏1
李元1

引用本文:

白利平1,谢鸿观1,单俊杰2,姜蓉1,张洋1,郭连宏1,李元1. 糖基转移酶基因双敲除对依博素生物合成的影响[J]. 中国生物工程杂志, 2009, 29(06): 46-51.

BAI Li-Beng-1, XIE Hong-Guan-1, CHAN Dun-Jie-2, JIANG Rong-1, ZHANG Xiang-1, GUO Lian-Hong-1, LI Yuan-1. The Effects of Glycosyltransferase Genes Double Disruption in Ebosin Biosynthesis. China Biotechnology, 2009, 29(06): 46-51.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I06/46

[1] Unligil U M, Rini J M. Glycosyltransferase structure and mechanism. Curr Opin Struct Biol, 2000, 10: 510~517 [2] van Kranenburg R, Boels I C, Kleerebezem M, et al. Genetics and engineering of microbial exopolysaccharides for food: approaches for the production of existing and novel polysaccharides. Current Opinion in Biotechnology, 1999, 10: 498~504 [3] Welman A D, Maddox I S. Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnology, 2003, 21: 269~274 [4] Wang L Y, Li S T, Li Y. Identification and characterization of a new exopolysaccharide biosynthesis gene cluster from Streptomyces. FEMS Microbiology Letters, 2003, 220: 21~27 [5] Sun Q L, Wang L Y, Shan J J, et al. Knockout of the gene (ste15) encoding a glycosyltransferase and its function in biosynthesis of exopolysaccharide in Streptomyces sp. 139. Archives of Microbiology, 2007, 188: 333~340 [6] Zhang T, Wang L, Xu G, et al. Disruption of ste22 gene encoding a glycosyltransferase and its function in biosynthesis of Ebosin in Streptomyces sp.139. Current Microbiology, 2006, 52: 55~59 [7] MacNeil D J, Gewain K M, Ruby C L, et al. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene, 1992, 111: 61~68 [8] Bierman M, Logan R, O’Brien K, et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene, 1992, 116: 43~49 [9] Engel P. Plasmid transformation of Streptomyces tendae after heat attenuation of restriction. Applied and Environmental Microbiology, 1987, 53: 1~3 [10] Kieser T, Bibb M J, Butter M J, et al. Practical Streptomyces genetics. Norwich England:The John Innes Foundation, 2000 [11] 白利平,姜蓉,单俊杰,等. ste7与ste15双基因敲除对依博素生物合成影响. 微生物学报,2009, (4): 471~478 Bai L P, Jiang R, Shan J J, et al. Acta Microbiologica Sinica,2009, (4): 471~478 [12] 徐桂芸,常理文,费丽华. 牛颌下腺粘蛋白中糖组成的毛细管气相色谱分析.分析化学,1998, 26: 922~926 Xu G Y, Chang L W, Fei L H. Chinese Journal of Analytical Chemistry, 1998, 26: 922~926 [13] Bitter T, Muir H M. A modified uronic acid carbazole reaction. Analytical Biochemistry, 1962, 4: 330~334 [14] Jing C, Jianbo W, Yuan L, et al. A new IL-1 receptor inhibitor 139A: fermentation, isolation, physicochemical properties and structure. Journal of Antibiotics, 2003, 56: 87~90 [15] Kleerebezem M, van Kranenburg R, Tuinier R, et al. Exopolysaccharides produced by Lactococcus lactis: from genetic engineering to improved rheological properties. Antonie Van Leeuwenhoek, 1999, 76:357~365 [16] Gao M, D’Haeze W, De Rycke R, et al. Knockout of an azorhizobial dTDPLrhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Molecular PlantMicrobe Interactions, 2001, 14:857~866 [17] Volpi N. Milligramscale preparation and purification of oligosaccharides of defined length possessing the structure of chondroitin from defructosylated capsular polysaccharide K4. Glycobiology, 2003, 13: 635~640 [18] Honda S, Suzuki S, Taga A. Analysis of carbohydrates as 1-phenyl-3-methyl-5-pyrazolone derivatives by capillary/microchip electrophoresis and capillary electrochromatography. Journal of Pharmaceutical and Biomedical Analysis, 2003, 30:1689~1714

[1] 夏文跃, 王晶, 赵冰心, 潘小霞, 文喻玲, 陈元鼎. 轮状病毒VP4抗原表位在VP6载体蛋白同一位点表达比较研究[J]. 中国生物工程杂志, 2015, 35(8): 9-15.
[2] 高飞, 周婧, 刘晓彤, 李成磊, 姚慧鹏, 赵海霞, 吴琦. 苦荞锌指蛋白基因FtLOL1的克隆及其对非生物胁迫的应答[J]. 中国生物工程杂志, 2015, 35(8): 44-50.
[3] 万方, 张斌, 陈民良, 陈进聪, 陈雪岚. proCputP基因的敲除对钝齿棒杆菌产L-精氨酸生理代谢的影响[J]. 中国生物工程杂志, 2015, 35(8): 51-58.
[4] 常玉梅, 侯占铭. 禾谷镰刀菌中FgPDE1基因的敲除及其功能的研究[J]. 中国生物工程杂志, 2015, 35(8): 59-67.
[5] 王青, 徐彦召, 魏晓晓, 王秋霞, 杭柏林, 孙亚伟, 王飞飞, 胡建和. 猪繁殖与呼吸综合征病毒GP5a多克隆抗血清的制备[J]. 中国生物工程杂志, 2015, 35(8): 38-43.
[6] 申冬玲, 尚淑梅, 李卫娜, 严金平, 伊日布斯. ack基因敲除对Thermoanaerobacterium calidifontis Rx1发酵代谢的影响[J]. 中国生物工程杂志, 2015, 35(7): 37-44.
[7] 罗婉月, 李天明, 于莹, 许湄雪, 仪宏. Ketogulonigenium vulgare四环素诱导表达穿梭质粒的构建[J]. 中国生物工程杂志, 2015, 35(5): 81-86.
[8] 方世雄, 马义, 沈淑桃, 赵绍军, 洪岸. 基因重组TNFα衍生物TRSP10的高效制备及其对DU145细胞抑制作用研究[J]. 中国生物工程杂志, 2015, 35(4): 11-16.
[9] 王晓艳, 陈娜子, 艾君, 赵央, 吴美玉, 黄金枝, 姜潮, 李校堃. HBVpre-c-Fc融合蛋白在杆状病毒表达系统中的表达及其生物学活性研究[J]. 中国生物工程杂志, 2015, 35(4): 42-47.
[10] 肖仕圆, 许敬亮, 陈小燕, 杨柳, 袁振宏. 在大肠杆菌中表达酮酸脱羧酶产异戊醇[J]. 中国生物工程杂志, 2015, 35(4): 60-65.
[11] 龚隆财, 罗镇明, 杨雁青, 王振宇, 向军俭, 王宏. cTnI-linker-TnC融合蛋白的原核表达及鉴定[J]. 中国生物工程杂志, 2015, 35(4): 48-53.
[12] 陈静静, 邢桂春, 张令强. 基于Loxp-Cre系统的FBXL15基因敲除小鼠模型的建立[J]. 中国生物工程杂志, 2015, 35(4): 74-79.
[13] 刘亚龙, 闫东明, 翁樑, 邹雪, 刘丹, 彭超, 苏亚南, 闫锦锦, 张静, 郭志燕. 重组大肠杆菌不耐热肠毒素B亚单位的中试发酵及纯化工艺[J]. 中国生物工程杂志, 2015, 35(2): 78-83.
[14] 刘阳, 杨雅麟, 张宇婷, 冉超, 周志刚. 维氏气单胞菌B565β-N-乙酰氨基葡萄糖苷酶的表达、纯化及酶学性质[J]. 中国生物工程杂志, 2015, 35(2): 38-44.
[15] 申梁, 谭文杰. 冠状病毒反向遗传操作技术及其应用进展[J]. 中国生物工程杂志, 2015, 35(2): 84-91.