Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (1): 95-103    
综述     
用于筛选人工结合蛋白的骨架蛋白
袁丽, 戴和平
中国科学院水生生物研究所 淡水生态与生物技术国家重点实验室 武汉 430072
Overview of Scaffold Protein Used for Selection of Artificial Binding Proteins
YUAN Li, DAI He-ping
State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
 全文: PDF(701 KB)   HTML
摘要: 抗体作为最著名的天然结合蛋白,因其具有与抗原特异结合的特性,近100多年以来无论在生物技术领域,还是在疾病的诊断及治疗方面,都发挥着广泛而重要的作用。但是抗体自身固有的局限性也在很大程度上限制了它的应用,而人工结合蛋白既具有抗体的特点,又兼具更多优势:分子更小;稳定性更高;能在大肠杆菌中高产量、高可溶性表达;易于修饰;能够达到高亲合力和高特异性;并且与抗体没有知识产权的冲突,因此被称为理想的"新一代抗体"。人工结合蛋白是从基因改造构建而成的骨架蛋白库中针对特定的靶分子筛选而得的。从骨架蛋白的概念和设计,骨架蛋白的分类,应用骨架蛋白筛选人工结合蛋白的技术以及人工结合蛋白的应用和前景等方面进行总结概述。
关键词: 抗体人工结合蛋白骨架蛋白噬菌体展示技术    
Abstract: As the most well-known native binding proteins, antibodies with binding ability to antigen are extensively used in biotechnological and medical applications for over one hundred years. However, the intrinsic limitations of antibodies restrict its applications in many fields. Artificial binding proteins not only have the properties of antibodies, but also are possess of more advantages: smaller size, higher stability, E. Coli production with high throughput and high solubility, ease of modification, high affinity and high specificity, no IP conflict with antibody, therefore it was also called as ideal "the next generational antibody". Artificial binding proteins were selected from protein scaffolds library which was constructed by gene engineering based on stable protein scaffolds. This review will focus on following points: the concept and design of protein scaffold, classify of protein scaffolds, screening technologies of artificial binding proteins based on protein scaffold and application and development of artificial binding proteins.
Key words: Antibody    Artificial binding protein    Scaffold protein    Phage display
收稿日期: 2012-09-12 出版日期: 2013-01-25
ZTFLH:  Q511  
通讯作者: 袁丽     E-mail: liyuan@ihb.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
戴和平
袁丽

引用本文:

袁丽, 戴和平. 用于筛选人工结合蛋白的骨架蛋白[J]. 中国生物工程杂志, 2013, 33(1): 95-103.

YUAN Li, DAI He-ping. Overview of Scaffold Protein Used for Selection of Artificial Binding Proteins. China Biotechnology, 2013, 33(1): 95-103.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I1/95

[1] Leader B, Baca Q J, Golan D E. Protein therapeutics: a summary and pharmacological classification. Nature Reviews Drug discovery, 2008, 7:21-39.
[2] Ku J, Schultz P G. Alternate protein frameworks for molecular recognition. Proc Natl Acad Sci U S A, 1995, 92:6552-6556.
[3] Lofblom J, Frejd F Y, Stahl S. Non-immunoglobulin based protein scaffolds. Curr Opin Biotechnol, 2011, 22:843-848.
[4] Nygren P A, Skerra A. Binding proteins from alternative scaffolds. Journal of Immunological Methods, 2004, 290:3-28.
[5] Hey T, Fiedler E, Rudolph R, et al. Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol, 2005, 23:514-522.
[6] Binz H K, Amstutz P, Pluckthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nature Biotechnology, 2005, 23:1257-1268.
[7] Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol, 2009, 13:2452-2455.
[8] 杜建芳, 王金凤, 孙万军, 等. 以Trx为骨架构建可诱导表达的酵母构象型随机肽库. 军事医学科学院院刊, 2006, 30 (3):201-205. Du J F, Wang J F, Sun W J, et al. Construct ion of an inducible yeast random conformat ion-constrained peptide library based on Trx scaffold. Bull Acad Mil Med Sci, 2006, 30 (3):201-205.
[9] 赵安, 薛沿宁, 冯健男, 等. 昆虫防御素A的分子改造及其在噬菌体表面的展示. 军事医学院院刊, 2002, 26 (4):270-272. Zhao A, Xue Y N, Feng J N, et al. Rational design of the insect defensin A and its displaying on the surface of phage. Bull Acad Mil Med Sci, 2002, 26 (4):270-272.
[10] Reichert J M, Valge-Archer V E. Development trends for monoclonal antibody cancer therapeutics. Nature Reviews Drug Discovery, 2007, 6:349-356.
[11] Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975, 256:495-497.
[12] Smith G P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228:1315-1317.
[13] McCafferty J, Griffiths A D, Winter G, et al. Phage antibodies: filamentous phage displaying antibody variable domains. Nature, 1990, 348:552-524.
[14] Ebersbach H, Fiedler E, Scheuermann T, et al. Affilin-novel binding molecules based on human gamma-B-crystallin, an All beta-Sheet Protein. J Mol Biol, 2007, 372:172-185.
[15] Hackel B J, Kapila A, Wittrup K D. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J Mol Biol, 2008, 381:1238-1252.
[16] Koide A, Abbatiello S, Rothgery L, et al. Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor. Proc Natl Acad Sci U S A, 2002, 99:1253-1258.
[17] Amstutz P, Binz H K, Parizek P, et al. Intracellular kinase inhibitors selected from combinatorial libraries of designed ankyrin repeat proteins. J Biol Chem, 2005, 280:24715-24722.
[18] Roberts B L, Markland W, Ley A C, et al. Directed evolution of a protein: selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc Natl Acad Sci U S A, 1992, 89:2429-2433.
[19] Dennis M S, Herzka A, Lazarus R A. Potent and selective Kunitz domain inhibitors of plasma kallikrein designed by phage display. J Biol Chem, 1995, 270:25411-25417.
[20] Williams A, Baird L G. DX-88 and HAE: a developmental perspective. Transfus Apher Sci, 2003, 29:255-258..
[21] Wark P A. DX-890 (Dyax). IDrugs: the investigational drugs journal, 2002, 5:586-589.
[22] Baggio R, Burgstaller P, Hale S P, et al. Identification of epitope-like consensus motifs using mRNA display. J Mol Recognit, 2002, 15:126-134.
[23] Hilpert K, Wessner H, Schneider-Mergener J, et al. Design and characterization of a hybrid miniprotein that specifically inhibits porcine pancreatic elastase. J Biol Chem, 2003, 278:24986-24993.
[24] Christmann A, Walter K, Wentzel A, et al. The cystine knot of a squash-type protease inhibitor as a structural scaffold for Escherichia coli cell surface display of conformationally constrained peptides. Protein Engineering, 1999, 12:797-806.
[25] Skerra A. Alternative binding proteins: anticalins - harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J, 2008, 275:2677-2683.
[26] Gebauer M, Skerra A. Anticalins small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol, 2012, 503:157-188.
[27] Hohlbaum A M, Skerra A. Anticalins: the lipocalin family as a novel protein scaffold for the development of next-generation immunotherapies. Expert Review of Clinical Immunology, 2007, 3:491-501.
[28] Liu J, Ning B, Liu M, et al. Construction of ribosome display library based on lipocalin scaffold and screening anticalins with specificity for estradiol. The Analyst, 2012, 137:2470-2479.
[29] Mercader J V, Skerra A. Generation of anticalins with specificity for a nonsymmetric phthalic acid ester. Anal Biochem, 2002, 308:269-277.
[30] Schlehuber S, Skerra A. Anticalins as an alternative to antibody technology. Expert Opinion on Biological Therapy, 2005, 5:1453-1462.
[31] Schonfeld D, Matschiner G, Chatwell L, et al. An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci U S A, 2009, 106:8198-8203.
[32] Kim H J, Eichinger A, Skerra A. High-affinity recognition of lanthanide(III) chelate complexes by a reprogrammed human lipocalin 2. J Am Chem Soc, 2009, 131:3565-3576.
[33] Schlehuber S, Skerra A. Anticalins in drug development. BioDrugs: clinical immunotherapeutics. Biopharmaceuticals and Gene Therapy, 2005, 19:279-288.
[34] Hufton S E, van Neer N, van den Beuken T, et al. Development and application of cytotoxic T lymphocyte-associated antigen 4 as a protein scaffold for the generation of novel binding ligands. FEBS letters, 2000, 475:225-231.
[35] Irving R A, Coia G, Roberts A, et al. Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. Journal of Immunological Methods, 2001, 248:31-45.
[36] Koide A, Bailey C W, Huang X, et al. The fibronectin type III domain as a scaffold for novel binding proteins. J Mol Biol, 1998, 284:1141-1151.
[37] Binz H K, Amstutz P, Kohl A, et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nature Biotechnology, 2004, 22:575-582.
[38] Tamaskovic R, Simon M, Stefan N, et al. Designed ankyrin repeat proteins (DARPins) from research to therapy. Methods Enzymol, 2012, 503:101-134.
[39] Binz H K, Stumpp M T, Forrer P, et al. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol, 2003, 332:489-503.
[40] Boersma Y L, Pluckthun A. DARPins and other repeat protein scaffolds: advances in engineering and applications. Curr Opin Biotechnol, 2011, 22:849-857.
[41] Seeger M A, Mittal A, Velamakanni S, et al. Tuning the drug efflux activity of an ABC transporter in vivo by in vitro selected DARPin binders. PLoS One, 2012, 7:e37845.
[42] Steiner D, Forrer P, Pluckthun A. Efficient selection of DARPins with sub-nanomolar affinities using SRP phage display. J Mol Biol, 2008, 382:1211-1227.
[43] Stumpp M T, Binz H K, Amstutz P. DARPins: a new generation of protein therapeutics. Drug Discovery Today, 2008, 13:695-701.
[44] Nord K, Nilsson J, Nilsson B, et al. A combinatorial library of an alpha-helical bacterial receptor domain. Protein Engineering, 1995, 8:601-608.
[45] Nord K, Gunneriusson E, Ringdahl J, et al. Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. Nature Biotechnology, 1997, 15:772-777.
[46] Wahlberg E, Lendel C, Helgstrand M, et al. An affibody in complex with a target protein: structure and coupled folding. Proc Natl Acad Sci U S A, 2003, 100:3185-190.
[47] Mirecka E A, Hey T, Fiedler U, et al. Affilin molecules selected against the human papillomavirus E7 protein inhibit the proliferation of target cells. J Mol Biol, 2009, 390:710-721.
[48] Hoffmann A, Kovermann M, Lilie H, et al. New binding mode to TNF-alpha revealed by ubiquitin-based artificial binding protein. PLoS One, 2012, 7:e31298.
[49] Nilsson B, Berman-Marks C, Kuntz I D, et al. Secretion incompetence of bovine pancreatic trypsin inhibitor expressed in Escherichia coli. J Biol Chem, 1991, 266:2970-2977.
[50] Teter S A, Klionsky D J. How to get a folded protein across a membrane. Trends in Cell Biology, 1999, 9:428-431.
[51] Valent Q A. Signal recognition particle mediated protein targeting in Escherichia coli. Antonie van Leeuwenhoek, 2001, 79:17-31.
[52] Nangola S, Minard P, Tayapiwatana C. Appraisal of translocation pathways for displaying ankyrin repeat protein on phage particles. Protein Expression and Purification, 2010, 74:156-161.
[53] Steiner D, Forrer P, Stumpp M T, et al. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nature Biotechnology, 2006, 24:823-831.
[54] Droge M J, Boersma Y L, Braun P G, et al. Phage display of an intracellular carboxylesterase of Bacillus subtilis: comparison of Sec and Tat pathway export capabilities. Applied and Environmental Microbiology, 2006, 72:4589-4595.
[55] Velappan N, Fisher H E, Pesavento E, et al. A comprehensive analysis of filamentous phage display vectors for cytoplasmic proteins: an analysis with different fluorescent proteins. Nucleic Acids Res, 2010, 38:e22.
[56] Paschke M, Hohne W. A twin-arginine translocation (Tat)-mediated phage display system. Gene, 2005, 350:79-88.
[57] Speck J, Arndt K M, Muller K M. Efficient phage display of intracellularly folded proteins mediated by the TAT pathway. Protein Eng Des Sel, 2011, 24:473-484.
[58] Krumpe L R, Atkinson A J, Smythers G W, et al. T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries. Proteomics, 2006, 6:4210-4222.
[59] Herman R E, Badders D, Fuller M, et al. The Trp cage motif as a scaffold for the display of a randomized peptide library on bacteriophage T7. J Biol Chem, 2007, 282:9813-9824.
[60] Dai M, Temirov J, Pesavento E, et al. Using T7 phage display to select GFP-based binders. Protein Eng Des Sel, 2008, 21:413-424.
[61] Beck A, Wurch T, Bailly C, et al. Strategies and challenges for the next generation of therapeutic antibodies. Nature Reviews Immunology, 2010, 10:345-352.
[62] Tolmachev V. Imaging of HER-2 overexpression in tumors for guiding therapy. Current Pharmaceutical Design, 2008, 14:2999-3019.
[63] Miao Z, Levi J, Cheng Z. Protein scaffold-based molecular probes for cancer molecular imaging. Amino Acids, 2011, 41:1037-1047.
[64] Sennhauser G, Grutter M G. Chaperone-assisted crystallography with DARPins. Structure, 2008, 16:1443-1453.
[65] Huber T, Steiner D, Rothlisberger D, et al. In vitro selection and characterization of DARPins and Fab fragments for the co-crystallization of membrane proteins: The Na(+)-citrate symporter CitS as an example. J Struct Biol, 2007, 159:206-221.
[66] Nord K, Gunneriusson E, Uhlen M, et al. Ligands selected from combinatorial libraries of protein A for use in affinity capture of apolipoprotein A-1M and taq DNA polymerase. Journal of Biotechnology, 2000, 80:45-54.
[67] Reina J, Lacroix E, Hobson S D, et al. Computer-aided design of a PDZ domain to recognize new target sequences. Nature Structural Biology, 2002, 9:621-627.
[1] 陈修月,周文锋,何庆,苏冰,邹亚文. 噬菌体Qβ病毒样颗粒的制备、纯化及鉴定[J]. 中国生物工程杂志, 2021, 41(7): 42-49.
[2] 陈文洁,苗先锋. 抗体偶联药物国内研发现状及企业布局分析[J]. 中国生物工程杂志, 2021, 41(6): 105-110.
[3] 许叶春,柳红,李剑峰,沈敬山,蒋华良. 抗新冠肺炎药物研究进展[J]. 中国生物工程杂志, 2021, 41(6): 111-118.
[4] 史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.
[5] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[6] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[7] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[8] 赵妍淑,张金华,宋浩. 工程原核生物和酵母菌中生产单克隆抗体和抗体片段研究进展 *[J]. 中国生物工程杂志, 2020, 40(8): 74-83.
[9] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[10] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[11] 武瑞君,李治非,张鑫,濮润,敖翼,孙燕荣. 新冠病毒抗体药物研发进展及展望分析[J]. 中国生物工程杂志, 2020, 40(5): 1-6.
[12] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[13] 李彤彤,宋彩玲,杨凯越,王文静,陈慧宇,刘明. 抗犬细小病毒VP2蛋白单链抗体的制备与中和活性研究 *[J]. 中国生物工程杂志, 2020, 40(4): 10-16.
[14] 王猛,宋慧茹,程雨洁,王毅,杨波,胡征. 以核糖体蛋白L7/L12为分子标志物精准检测肺炎链球菌的研究 *[J]. 中国生物工程杂志, 2020, 40(4): 34-41.
[15] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.