Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (06): 129-134    
综述     
间充质干细胞向软骨细胞表型分化的研究进展
柳菁1, 宇丽1, 许超2
1. 暨南大学医学院生物化学教研室 广州 510632;
2. 暨南大学医学院中心实验室 广州 510632
The Research of Mesenchymal Stem Cells Differentiate Chondrocytes
LIU Jing1, YU Li1, XU Chao2
1. Biochemistry Department of Medical College, Jinan University, Guangzhou 510632, China;
2. Tin Ka Ping Center for Medical Experiment of Medical College, Jinan University, Guangzhou 510632, China
 全文: PDF(432 KB)   HTML
摘要:

关节软骨自我修复能力有限,目前临床用于治疗关节软骨损伤的方法和药物均难以达到满意的效果。间充质干细胞具有分化潜力大、增殖能力强、免疫原性低、取材方便等特点,可能成为软骨组织工程的理想种子细胞之一。就间充质干细胞在软骨表型分化方面的研究进展进行了综述。系统地介绍了影响间充质干细胞向软骨细胞分化的诸多因素,如:生长因子、氧气浓度、三维支架等。并对间充质干细胞作为种子细胞存在的问题和下一步的发展方向提出了见解。

关键词: 间充质干细胞软骨细胞分化影响因素    
Abstract:

Articular cartilage has limited ability to repair and regeneration by itself. At present, the clinical treatment and drugs for articular cartilage injury are difficult to achieve satisfactory results. Mesenchymal stem cells present themselves as a promising cell source for cartilage tissue engineering, because they have great potential for multilineage differentiation, expandable in vitro without losing their differentiation type, low immunogenicity and easily obtainable in high numbers. The Mesenchymal stem cells differentiate chondrocytes was focused on and many effect factors of Mesenchymal stem cells differentiate chondrocytes, such as growth factor, oxygen concentration, scaffold and so on were systematically introduced. In addition, some opinions on MSCs as seed cells present disease and development for cartilage tissue engineering were given.

Key words: Mesenchymal stem cells    Chondrocytes    Differentiation    Effect factor
收稿日期: 2010-11-29 出版日期: 2011-06-28
ZTFLH:  Q819  
基金资助:

国家"863"计划 (2009AA02Z204)、国家杰出青年基金(20625619)资助项目

通讯作者: 许超     E-mail: doctoryuli@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
柳菁
宇丽
许超

引用本文:

柳菁, 宇丽, 许超. 间充质干细胞向软骨细胞表型分化的研究进展[J]. 中国生物工程杂志, 2011, 31(06): 129-134.

LIU Jing, YU Li, XU Chao. The Research of Mesenchymal Stem Cells Differentiate Chondrocytes. China Biotechnology, 2011, 31(06): 129-134.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I06/129

[1] Vasiliadis H S, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev, 2010, 10: CD003323.
[2] Onyekwelu I, Goldring M B, Hidaka C. Chondrogenesis, joint formation, and articular cartilage regeneration. J Cell Biochem,2009,107(3):383-392.
[3] Matsumoto T, Okabe T, Ikawa T, et al. Articular cartilage repair with autologous bone marrow mesenchymal cells. J Cell Physiol, 2010,225(2):291-295.
[4] Shimomura K,Ando W,Tateishi K, et al. The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model. Biomaterials, 2010, 31(31):8004-8011.
[5] Ramadori G, Mansuroglu T. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development. Hepatology, 2009,49(3):998-1011.
[6] Avanzini M A, Bernardo M E, Cometa A M, et al. Generation of mesenchymal stromal cells in the presence of platelet lysate: a phenotypic and functional comparison of umbilical cord blood-and bone marrow-derived progenitors. Haematologica, 2009, 94(12):1649-1660.
[7] Uccelli A, Moretta L, Pistoia V, et al. Mesenchymal stem cells in health and disease. Nat Rev Immunol, 2008, 8(9):726-736.
[8] Mizokami T, Hisha H, Okazaki S, et al. Preferential expansion of human umbilical cord blood-derived CD34-positive cells on major histocompatibility complex-matched amnion-derived mesenchymal stem cells. Haematologica, 2009,94(5):618-628.
[9] Kim J Y, Jeon H B, Yang Y S, et al. Application of human umbilical cord blood-derived mesenchymal stem cells in disease models. World J Stem Cells,2010, 2(2): 34-38.
[10] 孙辉,刘俊兵. 细胞因子对软骨细胞分化形成的作用和影响. 济宁医学院学报,2008, 31(4):302-304. Sun H, Liu J B. Journal of Jining Medical College, 2008, 31(4):302-304.
[11] Olivos-Meza A, Fitzsimmons J S, Casper M E, et al. Pretreatment of periosteum with TGF-beta1 in situ enhances the quality of osteochondral tissue regenerated from transplanted periosteal grafts in adult rabbits. Osteoarthritis Cartilage, 2010,18(9):1183-1191.
[12] Kim B S, Kang K S, Kang S K. Soluble factors from ASCs effectively direct control of chondrogenic fate. Cell Prolif, 2010,43(3):249-261.
[13] Jaklenec A, Hinckfuss A, Bilgen B, et al.Sequential release of bioactive IGF-I and TGF-beta(1) from PLGA microsphere-based scaffolds. Biomaterials, 2008,29(10):1518-1525.
[14] Uebersax L, Merkle H P, Meinel L, et al. Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J Control Release, 2008, 127(1):12-21.
[15] Wang X, Wenk E, Zhang X, et al. Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release, 2009,134(2):81-90.
[16] Derfoul A, Perkins G L, Hall D J, et al. Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells, 2006, 24(6):1487-1495.
[17] Mwale F, Stachura D, Roughley P, et al. Limitations of using aggrecan and type X collagen as markers of chondrogenesis in mesenchymal stem cell differentiation. J Orthop Res, 2006, 24(8):1791-1798.
[18] Richardson S M, Hoyland J A, Mobasheri R, et al. Mesenchymal stem cells in regenerative medicine: Opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol, 2010,222(1):23-32.
[19] Knippenberg M, Helder M N, Zandieh Doulabi B, et al. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun, 2006, 342(3):902-908.
[20] Vukicevic S, Grgurevic L. BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev, 2009,20(5-6):441-448.
[21] Kemmis C M, Vahdati A, Weiss H E, et al. Bone morphogenetic protein 6 drives both osteogenesis and chondrogenesis in murine adipose-derived mesenchymal cells depending on culture conditions. Biochem Biophys Res Commun, 2010,401(1):20-25.
[22] Csaki C, Schneider P R, Shakibaei M, et al. Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat, 2008, 190(5):395-412.
[23] Weiss S, Hennig T, Bock R, et al. Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells. J Cell Physiol, 2010,223(1):84-93.
[24] Park K H, Na K. Effect of growth factors on chondrogenic differentiation of rabbit mesenchymal cells embedded in injectable hydrogels. J Biosci Bioeng, 2008,106(1):74-79.
[25] Romero-Prado M, Blázquez C, Rodríguez-Navas C, et al. Functional characterization of human mesenchymal stem cells that maintain osteochondral fates. J Cell Biochem, 2006, 98(6):1457-1470.
[26] 王开友,张鲁平,王颖,等. 血管内皮生长因子对骨髓间充质干细胞向软骨细胞分化的影响. 中国矫形外科杂志, 2007, 15(19):1501-1503. Wang K Y, Zhang L P, Wang Y, et al. Orthopedic Journal of China, 2007,15(19):1501-1503.
[27] Arikawa T, Matsukawa A, Watanabe K, et al. Galectin-9 accelerates transforming growth factor beta3-induced differentiation of human mesenchymal stem cells to chondrocytes. Bone,2009,44(5):849-857.
[28] Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res, 2008,26(10):1407-1412.
[29] Pei M, Chen D M, Li J T, et al. Histone deacetylase 4 promotes TGF-beta 1-induced synovium-derived stem cell chondrogenesis but inhibits chondrogenically differentiated stem cell hypertrophy. Differentiation, 2009,78(5): 260-268.
[30] Ma T, Grayson W L, Frhlich M, et al. Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog, 2009,25(1):32-42.
[31] Markway B D, Tan G K, Brooke G, et al. Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures. Cell Transplant, 2010,19(1):29-42.
[32] Merceron C, Vinatier C, Portron S, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose-derived stem cells. Am J Physiol Cell Physiol, 2010, 298(2):C355-364.
[33] Choi K H, Choi B H, Park S R, et al. The chondrogenic differentiation of mesenchymal stem cells on an extracellular matrix scaffold derived from porcine chondrocytes. Biomaterials, 2010, 31(20):5355-5365.
[34] Liu L, Wu W, Tuo X, et al. Novel strategy to engineer trachea cartilage graft with marrow mesenchymal stem cell macroaggregate and hydrolyzable scaffold. Artif Organs, 2010,34(5):426-433.
[35] Chen W C, Yao C L, Chu I M, et al. Compare the effects of chondrogenesis by culture of human mesenchymal stem cells with various type of the chondroitin sulfate C. J Biosci Bioeng, 2011,111(2):226-231.
[36] Breyner N M, Hell R C, Carvalho L R, et al. Effect of a three-dimensional chitosan porous scaffold on the differentiation of mesenchymal stem cells into chondrocytes. Cells Tissues Organs, 2010,191(2):119-128.
[37] 林增平,王万明,陈学明,等.力学刺激对人骨髓间充质干细胞/聚乳酸-聚羟基乙酸共聚物生物学性状的影响. 中国组织工程研究与临床康复, 2009, 13(21):4080-4084. Lin Z P, Wang W M, Chen X M, et al. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13(21):4080-4084.
[38] Wernike E, Li Z, Alini M, et al. Effect of reduced oxygen tension and long-term mechanical stimulation on chondrocyte-polymer constructs. Cell Tissue Res, 2008, 331(2):473-483.
[39] Budde S, Jagodzinski M, Wehmeier M, et al. No effect in combining chondrogenic predifferentiation and mechanical cyclic compression on osteochondral constructs stimulated in a bioreactor. Ann Anat, 2010,192(4):237-246.
[40] Artaza J N, Norris K C. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J Endocrinol, 2009, 200(2):207-221.
[41] 李琼.间充质干细胞体外软骨定向诱导条件的研究进展.中国美容医学,2009, 18(9):1366-1369. Li Q. Chinese Journal of Aesthetic Medicin, 2009, 18(9):1366-1369.
[42] 王洋,张朝东,韩漫夫,等.碱性成纤维细胞生长因子及维生素C对骨髓间充质干细胞增殖的影响.中国全科医学,2009,12(22):2025-2028. Wang Y, Zhang C D,Han M F, et al. Chinese General Practice, 2009,12(22):2025-2028.
[43] Wang L, Seshareddy K, Weiss M L, et al Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Eng Part A, 2009,15(5):1009-1017.
[44] Khan W S, Johnson D S, Hardingham T E. The potential of stem cells in the treatment of knee cartilage defects. Knee, 2010,17(6):369-374.

[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[4] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[5] 陈飞,王晓冰,徐增辉,钱其军. 干细胞改善糖尿病的分子机制及临床研究进展[J]. 中国生物工程杂志, 2020, 40(7): 59-69.
[6] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[7] 辜浩,郭鑫宇,堵晶晶,张锫文,王定国,廖坤,张顺华,朱砺. MiR-186-5p对3T3-L1前脂肪细胞增殖分化的影响研究 *[J]. 中国生物工程杂志, 2020, 40(3): 21-30.
[8] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[9] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[10] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[11] 朱颖,范梦恬,李具琼,陈彬,张盟浩,吴静红,施琼. 趋化因子受体CX3CR1调控人主动脉瓣膜间质细胞成骨分化的作用研究 *[J]. 中国生物工程杂志, 2019, 39(8): 7-16.
[12] 程瑜,施琼,安利钦,范梦恬,皇改改,翁亚光. BMP7基因沉默抑制钙盐诱导猪主动脉瓣膜间质细胞成骨分化 *[J]. 中国生物工程杂志, 2019, 39(5): 63-71.
[13] 李欣,赵中利,罗晓彤,曹阳,张立春,于永生,金海国. 诱导多能干细胞向雄性生殖细胞分化诱导物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 94-100.
[14] 施文雯,张蕾. 力学微环境影响间充质干细胞分化的研究现状 *[J]. 中国生物工程杂志, 2018, 38(8): 76-83.
[15] 郑妍,姚欢,杨珂. SFRP5抑制BMP9诱导人脐带间充质干细胞成骨分化的实验研究 *[J]. 中国生物工程杂志, 2018, 38(7): 7-13.