Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (06): 111-115    
综述     
腺病毒载体的高分子修饰
魏林1,2, 邱飞1,2, 刁勇1,2
1. 华侨大学分子药物学研究所 泉州 362021;
2. 分子药物教育部工程研究中心 泉州 362021
Macromolecule Modified Adenovirus as Vector for Gene Therapy
WEI Lin1,2, QIU Fei1,2, DIAO Yong1,2
1. Institute of Molecular Medicine, Huaqiao University, Quanzhou 362021, China;
2. Engineering Research Center of Molecular Medicine, Ministry of Education, Quanzhou 362021, China
 全文: PDF(417 KB)   HTML
摘要:

腺病毒载体是基因治疗的常用载体之一,已经广泛应用于肿瘤和遗传疾病等的基因治疗研究中。但是临床发现腺病毒载体有较高的免疫原性,同时缺乏组织或细胞特异性,制约了其在临床上的应用。通过共价键结合或者静电力作用,将高分子修饰到病毒衣壳上,利用高分子的特殊性质可以降低载体的免疫原性和提高载体的靶向性,同时载体保持了较高的转染能力。主要综述了近年来采用高分子对腺病毒载体进行修饰的研究进展。

关键词: 腺病毒载体高分子靶向性免疫原性    
Abstract:

Adenovirus is a kind of virus vector which is used widely in gene therapy, especially in treating cancer and heredopathia. However, its non-specificity and high immunogenicity have inhibited its application in clinical. Virus which modified with macromolecular to the capsid of virus through covalently conjugate or electrostatic interaction have lower immunogenicity and high tropism, and the modifications have little effect in their gene transduction efficacy. It is becoming an important modification method in adenovirus. The progress of modified adenovirus with polymers were reviewed.

Key words: Adenovirus vector    Polymer    Target    Immunogenicity
收稿日期: 2011-01-30 出版日期: 2011-06-28
ZTFLH:  Q819  
基金资助:

国家自然科学基金(30900351)、福建省自然科学基金(2009J05029)、福建省生物医药工程研究生教育创新基地(06070205)资助项目

通讯作者: 邱飞     E-mail: qiufei@hqu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
魏林
邱飞
刁勇

引用本文:

魏林, 邱飞, 刁勇. 腺病毒载体的高分子修饰[J]. 中国生物工程杂志, 2011, 31(06): 111-115.

WEI Lin, QIU Fei, DIAO Yong. Macromolecule Modified Adenovirus as Vector for Gene Therapy. China Biotechnology, 2011, 31(06): 111-115.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I06/111

[1] Kim S Y, Peng Z H, Kaneda Y F, et al. Current status of gene therapy in Asia. Mol Ther, 2008, 16(2): 237-243.
[2] Wonganan P, Croyle M A. PEGylated adenoviruses: from mice to monkeys. Viruses, 2010, 2, 468-502.
[3] Clinical Trial sita Vectors used in gene therapy clinical trial. http://www.abedia.com/wiley/vectors.php.
[4] Oliver M T, Kerry D F, Julia H, et al. Glycoviruses: chemical glycosylation retargets adenoviral gene transfe. Angew Chem Int Ed, 2005, 44: 1057-1061.
[5] O'Riordan C R, Lachapelle A, Delgado C, et al. PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther, 1999, 10: 1349-1358.
[6] Cheng X, Ming X, Croyle M A. PEGylated adenoviruses for gene delivery to the intestinal epithelium by the oral route. Pharm Res, 2003, 20(9): 1444-1451.
[7] Croyle M A, Chirmule N, Zhang Y, et al. PEGylation of E1-Deleted adenovirus vectors allows significant gene expression on readministration to liver. Hum Gene Ther, 2002, 13: 1887-1900.
[8] Hoyin M, Donna J P, Philip N, et al. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther, 2005, 11: 66-79.
[9] Wortmann A, Vhringer S, Engler T, et al. Fully detargeted polyethylene glycol-coated adenovirus vectors are potent genetic vaccines and escape from pre-existing anti-adenovirus antibodies. Mol Ther, 2008, 16: 154-162.
[10] Hofherr S E, Shashkova E V, Weaver E, et al. Modification of adenoviral vectors with polyethylene glycol modulates In vivo tissue tropism and gene expression. Mol Ther, 2008, 16: 1276-1282.
[11] Danielsson A, Elgue G, Nilsson B M, et al. An ex vivo loop system models the toxicity and efficacy of PEGylated and unmodified adenovirus serotype 5 in whole human blood. Gene Ther, 2010, 17: 1-11.
[12] Ji W P, Hyejung M, Tae G P. Physical adsorption of PEG grafted and blocked poly-L-lysine copolymers on adenovirus surface for enhanced gene transduction. J Cont Rel, 2010, 142: 238-244.
[13] Ji W P, Hyejung M, Tae G P. Epidermal growth factor (EGF) receptor targeted delivery of PEGylated adenovirus. Biochem Bioph Res Co, 2008, 366: 769-774.
[14] Jung Y Y, Park H, Kim P-H, et al. Retargeting of adenoviral gene delivery via Herceptin-PEG-adenovirus conjugates to breast cancer cells. J Cont Rel, 2007, 123: 164-171.
[15] Oh I K, Mok H, Park T G. Folate immobilized and PEGylated adenovirus for retargeting to tumor cells. Bioconjugate Chem, 2006, 17: 721-727.
[16] Yao X, Yoshioka Y, Morishige T, et al. Adenovirus vector covalently conjugated to polyethylene glycol with a cancer-specific promoter suppresses the tumor growth through systemic administration. Biol Pharm Bull, 2010, 33(6): 1073-1076.
[17] Blanka R. Biocompatibility and immunocompatibility of water-soluble polymers based on HPMA. Composites: Part B, 2007, 38: 386-397.
[18] Kreppel F, Kochanek S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. Mol Ther, 2008, 16: 16-29.
[19] Karel U, Vladimír . Structural and chemical aspects of HPMA copolymers as drug carriers. Adv Drug Deliver Rev, 2010, 62: 150-166.
[20] Subr V, Ulbrich K. Synthesis and properties of new N-(2-hydroxypropyl)-methacrylamide copolymers containing thiazolidine-2-thione reactive groups. React Funct Polym, 2006, 66: 1525-1538.
[21] Fisher K D, Stallwood Y, Green N K, et al. Polymer-coated adenovirus permits efficient retargeting and evades neutralizing antibodies. Gene Ther, 2001, 8: 341-348.
[22] Robert C, Carlisle Y D, Anna M C, et al. Human erythrocytes bind and inactivate type 5 adenovirus by presenting Coxsackie virus-adenovirus receptor and complement receptor 1. Blood, 2009, 113: 1909-1918.
[23] Vladimir S, Libor K, Tom S M, et al. Coating of adenovirus type 5 with polymers containing quaternary amines prevents binding to blood components. J Cont Rel, 2009, 135: 152-158.
[24] Green N K, Herbert C W, Hale S J, et al. Extended plasma circulation time and decreased toxicity of polymer-coated adenovirus. Gene Ther, 2004, 11: 1256-1263.
[25] Morrison J, Briggs S S, Green Nicola. Virttherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor. Mol Ther, 2007, 16: 244-251.
[26] Green N K, Morrison J, Hale S. Retargeting polymer-coated adenovirus to the FGF receptor allows productive infection and mediates efficacy in a peritoneal model of human ovarian cancer. J. Gene Med, 2008, 10: 280-289.
[27] Fisher K D, Green N K, Hale H, et al. Passive tumor targeting of polymer-coated adenovirus for cancer gene therapy. J Drug Target, 2007, 15: 546-551.
[28] Kasman L M, Barua S, Lu P, et al. Polymer-enhanced adenoviral transduction of CAR-negative bladder cancer cells. Molecular Pharmaceutics, 2009, 6(5): 1612-1619.
[29] Han J F, Zhao D, Zhong Z R, et al. Combination of adenovirus and cross-linked low molecular weight PEI improves efficiency of gene transduction. Nanotechnology, 2010, 21(10): 1-10.
[30] Espenlaub S, Wortmann A, Engler T, et al. Reductive amination as a strategy to reduce adenovirus vector promiscuity by chemical capsid modification with large polysaccharides. J Gene Med, 2008, 10: 1303-1314.
[31] Park Y, Eunah Kang, Kwon O J, et al. Ionically crosslinked Ad/chitosan nanocomplexes processed by electrospinning for targeted cancer gene therapy. J Cont Rel, 2010, 148: 75-82.
[32] Wang I J, Jhuang M C, Chen Y H, et al. Chitosan modification of adenovirus to modify transfection efficiency in bovine corneal epithelial cells. Plos One, 2010, 5: 1-10.
[33] Harding S E. Mucoadhesive interactions. Biochem Soc Trans, 2003, 31: 1036-1041.
[34] Stevenson M, Boos E, Herbert C, et al. Chick embryo lethal orphan virus can be polymer-coated and retargeted to infect mammalian cells. Gene Ther, 2006, 13: 356-368.
[35] Robert C C, Reuben B, Simon S B, et al. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralizing antisera. J Gene Med, 2008, 10: 400-411.

[1] 黄蕾,万常青,刘美琴,赵敏,郑妍鹏,彭向雷,虞结梅,付远辉,何金生. 利用DNA Assembly方法构建重组腺病毒载体[J]. 中国生物工程杂志, 2021, 41(6): 23-26.
[2] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[3] 岑黔鸿,高彤,任怡,雷涵. 重组酿酒酵母表达幽门螺杆菌VacA蛋白及其免疫原性分析*[J]. 中国生物工程杂志, 2020, 40(5): 15-21.
[4] 齐家龙, 高瑞雨, 靳输梅, 高福兰, 杨旭, 马雁冰, 刘存宝. 水痘-带状疱疹病毒糖蛋白E在昆虫细胞中的表达、鉴定及免疫原性分析 *[J]. 中国生物工程杂志, 2019, 39(8): 17-24.
[5] 曹文杰,熊向源,龚妍春,李资玲,李玉萍. 高分子囊泡在药物释放体系的应用 *[J]. 中国生物工程杂志, 2019, 39(6): 62-72.
[6] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[7] 杜力,刘晓志,高健,王志明. 抗体药物免疫原性评估的研究进展[J]. 中国生物工程杂志, 2018, 38(2): 89-94.
[8] 吴剑荣,彭星桥,詹晓北. 聚唾液酸,一种非GAGs、非免疫原性生物材料的应用研究进展 *[J]. 中国生物工程杂志, 2017, 37(12): 96-102.
[9] 王晶, 夏文跃, 潘小霞, 赵冰心, 滕玉梅, 李传印, 杨筱舟, 文喻玲, 陈元鼎. 研究报告Ⅱ型脊灰病毒抗原表位嵌合蛋白的免疫学研究[J]. 中国生物工程杂志, 2016, 36(8): 1-8.
[10] 夏文跃, 王晶, 赵冰心, 潘小霞, 文喻玲, 陈元鼎. 轮状病毒VP4抗原表位在VP6载体蛋白同一位点表达比较研究[J]. 中国生物工程杂志, 2015, 35(8): 9-15.
[11] 李多, 杨丽娟, 赵玉娇, 潘玥, 陈俊英, 付娟娟, 黄新伟, 邱丽娟, 孙强明. 研究报告重组Ⅱ型登革病毒NS1的表达及其免疫原性的研究[J]. 中国生物工程杂志, 2014, 34(9): 4-8.
[12] 张文峰, 张琼宇, 薄华本, 邵红伟, 李晓程, 王腾, 黄树林. 5型和35型腺病毒纤毛蛋白的原核表达及活性验证[J]. 中国生物工程杂志, 2013, 33(12): 15-20.
[13] 孙颖, 张灵霞, 吴雪琼, 董恩军. mpt64-卡介苗重组疫苗的构建、免疫原性及抗结核作用[J]. 中国生物工程杂志, 2011, 31(7): 14-19.
[14] 张凤娟, 杨吉成, 盛伟华, 王家融, 缪竞诚. 腺病毒介导的人抑瘤素M基因对A375人黑色素瘤细胞的抑制作用[J]. 中国生物工程杂志, 2011, 31(11): 24-30.
[15] 乔伟, 何金生, 付远辉, 洪涛. 腺病毒载体纤突结的改造及改造后的特性研究[J]. 中国生物工程杂志, 2011, 31(06): 86-92.