Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2010, Vol. 30 Issue (08): 37-41    DOI: S216
研究报告     
Al2O3催化剂对海洋生物质热解特性的影响
赵辉1,闫华晓2,刘明3,张萌萌4,田原宇2,秦松5
1.中国科学院海洋研究所 实验海洋生物学重点实验室 青岛 266071
2.中国科学院研究生院 北京 100049
3.山东科技大学化工学院生物工程系 青岛 266510
Effect of Al2O3 on Pyrolysis Characteristics of Enteromorpha clathrata
ZHAO Hui1, 2, 3,YAN Hua-xiao3,LIU Ming3,ZHANG Meng-meng3,TIAN Yuan-yu3,QIN Song1
1.Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2.Graduate School in Chinese Academy of Sciences, Beijing 100049, China
3.Biotechnology Department in Shandong University of Science and Technology, Qingdao 266510,China
 全文: PDF(596 KB)   HTML
摘要:

以海洋生物质浒苔为研究对象,并以玉米秸秆(草类生物质)和锯末(木质类生物质)为对照,采用热重分析方法研究了3种生物质的热解特性,并比较了3种生物质之间的热解差异。结果表明,与玉米秸秆和锯末等典型陆生生物质相比,浒苔的热稳定性最低。此外,以不同浓度氧化铝作为催化剂,用热重分析法对其热解过程进行了研究,利用TG-DTG曲线分析了不同催化剂在不同浓度下对其基本热解特性的影响。结果表明,Al2O3 对于3种生物质转化率和最大失重速率有显著的影响,其中Al2O3对锯末和浒苔的转化率降低程度比玉米秸秆较明显。考虑到Al2O3具有可调变的表面酸碱性以及多种不同的晶相结构等优点, Al2O3具有较大的的应用价值。

关键词: 海洋生物质催化热解热重分析    
Abstract:

Pyrolysis characteristics of Enteromorpha clathrata was investigated with thermogravimetric analyzer. Simultaneously, cornstalk and sawdust were references. The basic pyrolysis characteristics of the three kinds of biomass and the difference among them are analyzed using TG-DTG curves. The results showed that three stages appeared in this thermal degradation process and Enteromorpha clathrata has lower initial temperature and peak temperature of pyrolysis than two kinds of terrestrial biomass, which are sawdust and cornstalk. Moreover, with alumina catalyst in different concentration, the pyrolysis process of the three kinds of biomass, which are Enteromorpha clathrata, cornstalk and sawdust, were studied with thermogravimetric analysis method. The basic pyrolysis characteristics and the diffenence effect of the catalyst were analyzed by using TG-DTG curves . The results showed that the catalyst can reduce the conversion of the biomass and the maximum weight loss rate greatly. Specifically, alumina catalyst in 10% concentration has a notable impact on the conversion of the biomass and the maximum weight loss rate. Taking account of the surface of Al2O3 with tunable acidity and a variety of different crystal structure, Al2O3 catalyst has a great application value.

Key words: Marine biomass    Catalytic pyrolysis    Thermogravimetric analysis
收稿日期: 2010-03-12 出版日期: 2010-08-25
基金资助:

山东省高等学校科技计划项目(J09LC22)、中国科学院知识创新项目(KZCX2YW209)、中国科学院实验海洋生物学重点实验室开放基金(Kf 201016)资助项目

通讯作者: 赵辉;秦松     E-mail: zhsdust@126.com;sqin@ms.qdio.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵辉
闫华晓
刘明
张萌萌
田原宇
秦松

引用本文:

赵辉 闫华晓 刘明 张萌萌 田原宇 秦松. Al2O3催化剂对海洋生物质热解特性的影响[J]. 中国生物工程杂志, 2010, 30(08): 37-41.

DIAO Hui, YAN Hua-Xiao, LIU Meng, ZHANG Meng-Meng, TIAN Yuan-Yu, QIN Song. Effect of Al2O3 on Pyrolysis Characteristics of Enteromorpha clathrata. China Biotechnology, 2010, 30(08): 37-41.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/S216        https://manu60.magtech.com.cn/biotech/CN/Y2010/V30/I08/37

[1] 许洁,颜涌捷,李文志,等. 生物质裂解机理和模型(Ⅱ)-生物质裂解模型. 化学与生物工程,2008,25(1):14. Xu J, Yan Y J, Li W Z, et al.Chemistry & Bioengineering, 2008, 25(1): 14. 
[2] 傅旭峰,仲兆平,肖刚,等. 几种生物质热解特性及动力学的对比. 农业工程学报,2009,25(1):199202. Fu X F, Zhong Z P, Xiao G, et al.Transactions of the CSAE, 2009, 25(1):199202. 
[3] 任强强,赵长遂,庞克亮. 生物质热解的TGAFTIR分析. 太阳能学报,2008,29(7):910914. Ren Q Q, Zhao C S, Pang K L.Acta Energiae Solaris Sinica, 2008,29(7):910914. 
[4] Guozhan Jiang, Daniel J Nowakowski, Anthony V Bridgwater. A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010, 498:6166. 
[5] Torren R Carlson, Jungho Jae, Yu Chuan Lin,et al. Catalytic fast pyrolysis of glucose with HZSM5: The combined homogeneousand heterogeneous reactions. Journal of Catalysis, 2010, 270:110124. 
[6] Richard French, Stefan Czernik. Catalytic pyrolysis of biomass for biofuels production. Fuel Processing Technology, 2010, 91:2532. 
[7] Emma Jakab, Erika Me′ sza′ros, Judit Borsa. Effect of slight chemical modification on the pyrolysis behavior of cellulose fibers. Journal of Analytical and Applied Pyrolysis, 2010, 87:117123. 
[8] Pan Pan, Changwei Hu, Wenyan Yang, et al. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable biooils. Bioresource Technology, 2010,01:70. 
[9] Pushkaraj R, Patwardhan, Justinus A Satrio, Robert C Brown, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose. Bioresource Technology, 2010, doi:10.1016/j.biortech.2010.01.112. 
[10] 任小波,吴园涛,向文洲,等. 海洋生物质能研究进展及其发展战略思考. 地球科学进展,2009,24(4):403410. Ren X B, Wu Y T, Xiang W Z, et al.Advances in Earth Science, 2009, 24(4): 403410. 
[11] Jun Wang, Guangce Wang, Mingxu Zhang. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood. Process Biochemistry, 2006 , 41:18831886. 
[12] 熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素含量的测定.粮食与饲料工业, 2005, 08: 4041. Xiong S M, Zuo X F, Zhu Y Y.Cereal & Feed Industry, 2005,08:4041. 
[13] Zhao Hui, Yan Huaxiao, Zhang Mengmeng, et al. Pyrolysis characteristics and kinetics of Enteromorpha clathrata biomass:A potential way of converting ecological crisis “green tide” bioresource to bioenergy. Advanced Materials Research, 2010, 113114: 170175. 
[14] Williams PT, Horne PA. The role of metal salts in the pyrolysis of biomass. Renewable Energy, 1994, 4: 113. 
[15] 刘茜.中孔氧化铝材料的合成、表征和催化应用研究. 中国:大连,中国科学院大连化学物理研究所,2006. Liu Q. Synthesis, Characterization and Catalytic Application of Mesoporous Alumina.Da lian: Dalian institute of Chemical Physics, Chinese Academy of Sciences,2006.

No related articles found!