Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2016, Vol. 36 Issue (8): 38-45    DOI: 10.13523/j.cb.20160806
研究报告     
谷胱甘肽对VC一步发酵作用的研究
翟兵兵, 马倩, 丁明珠, 元英进
天津大学化工学院系统生物工程教育部重点实验室 天津化学化工协同创新中心 天津 300072
Study on the VC One Step Fermentation Under Glutathione
ZHAI Bing-bing, MA Qian, DING Ming-zhu, YUANG Ying-jin
School of Chemical Engineering, Key Laboratory of Systems Bioengineering(Ministry of Education), Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
 全文: PDF(1132 KB)   HTML
摘要:

谷胱甘肽(GSH)能有效促进酮古龙酸杆菌的生长。就GSH对氧化葡萄糖酸杆菌和酮古龙酸杆菌一步混菌发酵的作用进行了探索,为进一步阐明维生素C一步发酵过程中氧化葡萄糖酸杆菌和酮古龙酸杆菌的关系并提供发酵工艺优化的依据。研究发现,在5L的发酵罐中,外加1mg/ml的GSH对混菌的发酵有着显著的促进作用,2-酮-L-古龙酸(2-KGA)产量提高了22.8%。通过16S rDNA荧光定量PCR法测菌数,发现GSH的添加使酮古龙酸杆菌的生长提高到148%,但抑制氧化葡萄糖酸杆菌的生长,使其生物量下降到61%。运用代谢组学方法分析发现,GSH能促进酮古龙酸杆菌的磷酸戊糖、三羧酸循环、硫酸盐等代谢,同时减缓氧化葡萄糖酸杆菌对L-山梨糖的消耗,以促进整个混菌体系的发酵效率。

关键词: 谷胱甘肽酮古龙酸杆菌代谢组学氧化葡萄糖酸杆菌    
Abstract:

The aims are to find the effect of GSH on the two bacteria Ketogulonicigenium vulgare and Gluconobacter oxydans in vitamin C one-step fermentation process.It was found that addition of 1mg/ml glutathione to the 5L fermentation by K. vulgare-G. oxydans consortium significantly enhanced the production of 2-KGA by 22.8%. According to the 16S rDNA realtime fluorescence quantitative PCR analysis, the final biomass of K. vulgare increased to 148% and G. oxydans decreased to 61% relative to the control strain. Using the metabolomics methods, it is found that glutathione could promote pentose phosphate pathway, citric acid cycle, the sulfate and other metabolic pathways of K. vulgare, and glutathione can at the same time slow down the consumption of L-sorbose by G. oxydans to improve fermentation efficiency of the consortium.

Key words: Glutathione    Gluconobacter oxydans    Ketogulonicigenium vulgare    Metabolomics
收稿日期: 2016-01-28 出版日期: 2016-08-25
ZTFLH:  Q939.97  
基金资助:

国家重点基础研究发展计划(2014CB745100)、国家自然科学基金(21390203)资助项目

通讯作者: 丁明珠     E-mail: mzding@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

翟兵兵, 马倩, 丁明珠, 元英进. 谷胱甘肽对VC一步发酵作用的研究[J]. 中国生物工程杂志, 2016, 36(8): 38-45.

ZHAI Bing-bing, MA Qian, DING Ming-zhu, YUANG Ying-jin. Study on the VC One Step Fermentation Under Glutathione. China Biotechnology, 2016, 36(8): 38-45.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20160806        https://manu60.magtech.com.cn/biotech/CN/Y2016/V36/I8/38

[1] Pompella A, Visvikis A, Paolicchi A, et al. The changing faces of glutathione, a cellular protagonist. Biochemical Pharmacology, 2003, 66(8):1499-1503.
[2] Kowalska K, Zalewska M, Milnerowicz H. The application of capillary electrophoresis in the determination of glutathione in healthy women's blood. Journal of Chromatographic Science, 2015, 53(2):353-359.
[3] Pastore A, Piemonte F, Locatelli M, et al. Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clinical Chemistry, 2001, 47(8):1467-1469.
[4] Scholz R W, Graham K S, Gumpricht E, et al. Mechanism of interaction of vitamin E and glutathione in the protection against membrane lipid peroxidation. Annals of the New York Academy of Sciences, 1989, 570(1):514-517.
[5] Neri M, Fineschi V, Di Paolo M, et al. Cardiac oxidative stress and inflammatory cytokines response after myocardial infarction. Current Vascular Pharmacology, 2015, 13(1):26-36.
[6] Kumar C, Igbaria A, D'autreaux B, et al. Glutathione revisited:a vital function in iron metabolism and ancillary role in thiol-redox control. The EMBO Journal, 2011, 30(10):2044-2056.
[7] Aquilano K, Baldelli S, Ciriolo M R. Glutathione:new roles in redox signaling for an old antioxidant. Frontiers in Pharmacology,2014, 5:196.
[8] Hu Y, Wan H, Li J, et al. Enhanced production of l-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. Journal of Industrial Microbiology & Biotechnology, 2015, 42(7):1039-1047.
[9] Liu L, Li Y, Zhang J, et al. Complete genome sequence of the industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Bacteriology, 2011, 193(21):6108-6109.
[10] Du J, Bai W, Song H, et al. Combinational expression of sorbose/sorbosone dehydrogenases and cofactor pyrroloquinoline quinone increases 2-keto-l-gulonic acid production in Ketogulonigenium vulgare-Bacillus cereus consortium. Metabolic Engineering, 2013, 19:50-56.
[11] Zhang J, Zhou J, Liu J, et al. Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresource Technology, 2011, 102(7):4807-4814.
[12] Ye C, Zou W, Xu N, et al. Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production. Journal of Biotechnology, 2014, 182:61-67.
[13] Zhu Y, Liu J, Du G, et al. Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-L-gulonic acid biosynthesis. Bioresource Technology, 2012, 107:399-404.
[14] Sugisawa T, Miyazaki T, Hoshino T. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025. Bioscience, Biotechnology, and Biochemistry, 2005, 69(3):659-662.
[15] Sonoyama T, Kageyama B, Honjo T. Process for producing 2-keto-l-gulonic acid:U.S. Patent 3,922,194. 1975-11-25.
[16] Gao L, Hu Y, Liu J, et al. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metabolic Engineering, 2014, 24:30-37.
[17] Zou W, Liu L, Zhang J, et al. Reconstruction and analysis of a genome-scale metabolic mod of the vitamin C producing industrial strain Ketogulonicigenium vulgare WSH-001. Journal of Biotechnology, 2012, 161(1), 42-48.
[18] Ma Q, Zhang W, Zhang L, et al. Proteomic analysis of Ketogulonicigenium vulgare under glutathione reveals high demand for thiamin transport and antioxidant protection. PloS One, 2012, 7(2):e32156.
[19] Huang Z, Zou W, Liu J, et al. Glutathione enhances 2-keto-l-gulonic acid production based on Ketogulonicigenium vulgare model iWZ663. Journal of Biotechnology, 2013, 164(4):454-460.
[20] Zhou J, Ma Q, Yi H, et al. Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility. Applied and Environmental Microbiology, 2011, 77(19):7023-7030.
[21] Du J, Zhou J, Xue J, et al. Metabolomic profiling elucidates community dynamics of the Ketogulonicigenium vulgare-Bacillus megaterium consortium. Metabolomics, 2012, 8(5):960-973.
[22] Ding M Z, Zou Y, Song H, et al. Metabolomic analysis of cooperative adaptation between co-cultured Bacillus cereus and Ketogulonicigenium vulgare. PloS One, 2014, 9(4):e94889.
[23] Shinjoh M, Tazoe M, Hoshino T. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291. Journal of Bacteriology, 2002, 184(3):861-863.

[1] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.
[2] 钟成, 刘伶普, 李清亮, 杨攀飞, 郝俊光, 贾士儒. 采用代谢组学分析技术分析工业啤酒发酵过程中风味物质生成规律[J]. 中国生物工程杂志, 2016, 36(12): 49-58.
[3] 翟兵兵, 董秀涛, 丁明珠, 元英进. VC三菌种一步发酵方法的构建与研究[J]. 中国生物工程杂志, 2016, 36(12): 72-78.
[4] 罗婉月, 李天明, 于莹, 许湄雪, 仪宏. Ketogulonigenium vulgare四环素诱导表达穿梭质粒的构建[J]. 中国生物工程杂志, 2015, 35(5): 81-86.
[5] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[6] 王玮玮, 唐亮, 周文龙, 杨燕, 高波, 赵云峰, 王伟. 谷胱甘肽生物合成及代谢相关酶的研究进展[J]. 中国生物工程杂志, 2014, 34(7): 89-95.
[7] 王程, 隋春红, 闫岗林, 吕绍武, 牟颖. 含硒抗病毒多肽的半胱氨酸缺陷型表达及鉴定[J]. 中国生物工程杂志, 2014, 34(4): 16-20.
[8] 仪修南, 李天明, 王北辰, 刘金雷, 杜红燕, 冯惠勇. 代谢工程改造Gluconobacter suboxydans生产2-酮基-D-葡萄糖酸[J]. 中国生物工程杂志, 2014, 34(12): 97-106.
[9] 王玉磊, 朱健, 卫功元, 许宏庆, 汪成富. 柠檬酸钠促进S-腺苷蛋氨酸和谷胱甘肽联合高产[J]. 中国生物工程杂志, 2013, 33(8): 51-55.
[10] 罗二梅, 宇丽, 张家文, 柳菁. 还原型谷胱甘肽对人脐带间充质干细胞成软骨诱导的影响[J]. 中国生物工程杂志, 2013, 33(3): 1-8.
[11] 陈永露, 吴绵斌, 林建平, 杨立荣, 岑沛霖. GshF在大肠杆菌中的表达及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(12): 21-28.
[12] 王大慧, 许宏庆, 汪成富, 卫功元. 酸胁迫在提升富硒/GSH产朊假丝酵母性能中的作用[J]. 中国生物工程杂志, 2013, 33(11): 81-85.
[13] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.
[14] 孙彩霞, 汪莹, 吴晓菲, 陈利军, 武志杰. 转基因抗虫棉棉籽组分的代谢组学研究[J]. 中国生物工程杂志, 2012, 32(11): 35-41.
[15] 戴小燕, 沈晓波, 朱宏阳, 徐虹. Gluconobacter oxydans NH-10中短链D-阿拉伯糖醇脱氢酶的研究[J]. 中国生物工程杂志, 2010, 30(11): 39-43.