Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2009, Vol. 29 Issue (06): 130-134    
综述     
氨酰-tRNA合成酶的研究进展
周勤华1|周盛梅2
浙江省嘉兴市嘉兴学院
Research Progress on Aminoacyl-tRNA Synthetases
 全文: PDF(408 KB)   HTML
摘要: 氨酰-tRNA合成酶催化特异的氨基酸与同源tRNA氨酰化,从而保证了遗传密码翻译的忠实性。这些古老而保守的蛋白质分子除了具有酶的功能外,在哺乳动物细胞中还发现了多种其他功能,具有重要的应用价值。在寻找具有全新作用机制的新抗生素以应对日益严重的抗生素耐药现象过程中,氨酰-tRNA合成酶是细菌蛋白质合成过程中重要的、新颖的靶标,成为关注的重点。定向突变的氨酰-tRNA合成酶可以用来定点掺入非天然氨基酸,扩展蛋白质工程。今后,随着人们对氨酰-tRNA合成酶研究的不断深入,它们还可能用来治疗肿瘤等多种疾病。
关键词: 氨酰-tRNA合成酶;氨酰化;抑制剂    
Abstract:

Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to their cognate tRNAs, thereby ensuring the faithful translation of genetic code. In addition to their enzymatic function, these ancient and conserved enzymes have been discovered to have many additional functions in mammalian cells. As a result, several application aspects have been found. Aminoacyl-tRNA synthetases have attracted interest as essential and novel targets involved in bacterial protein synthesis, and they are now being pursued as targets for new antibiotic drugs. Engineered aminoacyl-tRNA synthetases are uesed for site-specifically incorporation of non-natural amino acids. The results with animals suggest that therapeutic applications for many human diseases such as tumor are possible with the cognate tRNA synthetases.

Key words: aminoacyl-tRNA synthetase;aminoacylation;inhibitor
收稿日期: 2008-08-22 出版日期: 2009-07-02
ZTFLH:  Q816  
通讯作者: 周勤华     E-mail: qinhuazhou_0522@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
周勤华1
周盛梅2

引用本文:

周勤华1,周盛梅2. 氨酰-tRNA合成酶的研究进展[J]. 中国生物工程杂志, 2009, 29(06): 130-134.

ZHOU Qi-Hua-1, ZHOU Cheng-Mei-2. Research Progress on Aminoacyl-tRNA Synthetases. China Biotechnology, 2009, 29(06): 130-134.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2009/V29/I06/130

[1] Hausmann C D, Ibba M. AminoacyltRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev,2008,32(4): 705~721 [2] Han J M, Kim J Y, Kim S. Molecular network and functional implications of macromolecular tRNA synthetase complex. Biochem Biophys Res Commun, 2003,303(4):985~993 [3] Greenberg Y, King M, Kiosses W B, et al. The novel fragment of tyrosyl tRNA synthetase, miniTyrRS, is secreted to induce an angiogenic response in endothelial cells. FASEB J, 2008,22(5):1597~1605 [4] Pohlmann J, BrtzOesterhelt H. New aminoacyltRNA synthetase inhibitors as antibacterial agents. Curr Drug Targets Infect Disord, 2004,4(4):261~272 [5] Kim S, Lee S W, Choi E C, et al. AminoacyltRNA synthetases and their inhibitors as a novel family of antibiotics. Appl Microbiol Biotechnol, 2003,61(4):278~288 [6] Mukai T, Kobayashi T, Hino N, et al. Adding llysine derivatives to the genetic code of mammalian cells with engineered pyrrolysyltRNA synthetases. Biochem Biophys Res Commun, 2008,371(4):818~822 [7] Kiga D, Sakamoto K, Kodama K, et al. An engineered Escherichia coli tyrosyltRNA synthetase for sitespecific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cellfree system. Proc Natl Acad Sci USA, 2002,99(15):9715~9720 [8] Kobayashi T, Sakamoto K, Takimura T, et al. Structural basis of nonnatural amino acid recognition by an engineered aminoacyltRNA synthetase for genetic code expansion. Proc Natl Acad Sci USA, 2005,102(5):1366~1371 [9] Ruan B, Sll D. The bacterial YbaK protein is a CystRNAPro and CystRNA Cys deacylase. J Biol Chem,2005,280 (27):25887~25891 [10] Bailly M, Blaise M, Lorber B, et al. The transamidosome: a dynamic ribonucleoprotein particle dedicated to prokaryotic tRNAdependent asparagine biosynthesis. Mol Cel ,2007,28(2):228~239 [11] PraetoriusIbba M, Rogers T E, Samson R, et al. Association between Archaeal prolyl and leucyltRNA synthetases enhances tRNA(Pro) aminoacylation. J Biol Chem, 2005,28 0(28):26099~26104 [12] Karanasios E, Simader H, Panayotou G, et al. Molecular determinants of the yeast Arc1paminoacyltRNA synthetase complex assembly. J Mol Biol,2007,374(4):1077~1090 [13] Guzzo C M, Yang D C. LysyltRNA synthetase interacts with EF1alpha, aspartyltRNA synthetase and p38 in vitro. Biochem Biophys Res Commun,2008,365(4):718~723 [14] 徐敏刚. 亮氨酰tRNA 合成酶和 tRNALeu的相互作用.上海:中国科学院上海生命科学研究院,2004. Xu M G. The interaction between leucyltRNA synthetase and tRNALeu. Shanghai: Shanghai Institutes for Biological Sciences,Chinese Academy of Science, 2004 [15] 刘云清. 大肠杆菌亮氨酰tRNA合成酶编校结构域和其与蛋氨酸和异亮氨酸复合物晶体结构的研究. 上海:中国科学院上海生命科学研究院,2006 Liu Y Q. The crystal structures of the editing domain of E. coli leucyltRNA synthetase and its complexes with methionine and isoleucine. Shanghai: Shanghai Institutes for Biological Sciences,Chinese Academy of Science, 2006 [16] Kowal A K, Kohrer C, RajBhandary U L. Twentyfirst aminoacyltRNA synthetasesuppressor tRNA pairs for possible use in sitespecific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria. Proc Natl Acad Sci USA, 2001,98(5):2268~2273 [17] Tang Y, Tirrell D A. Attenuation of the editing activity of the Escherichia coli leucyltRNA synthetase allows incorporation of novel amino acids into proteins in vivo. Biochemistry, 2002 ,41(34):10635~10645 [18] Kiick K L, Weberskirch R, Tirrell D A. Identification of an expanded set of translationally active methionine analogues in Escherichia coli. FEBS Lett, 2001,502(12):25~30 [19] Rock F L, Mao W, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyltRNA synthetase by trapping tRNA in the editing site. Science,2007,316(5832):1759~1761 [20] Bernier S, Akochy P M, Lapointe J, et al. Synthesis and aminoacyltRNA synthetase inhibitory activity of aspartyl adenylate analogs. Bioorg Med Chem,2005,13(1):69~75 [21] Balg C, Blais S P, Bernier S, et al. Synthesis of betaketophosphonate analogs of glutamyl and glutaminyl adenylate, and selective inhibition of the corresponding bacterial aminoacyltRNA synthetases. Bioorg Med Chem, 2007,15(1):295~304 [22] Otani A, Slike B M, Dorrell M I, et al. A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA,2002,99(1) : 178~183 [23] Tzima E, Schimmel P. Inhibition of tumor angiogenesis by a natural fragment of a tRNA synthetase. Trends Biochem Sci, 2006 ,31(1):7~10 [24] Edvardson S, Shaag A, Kolesnikova O, et al. Deleterious mutation in the mitochondrial arginyltransfer RNA synthetase gene is associated with pontocerebellar hypoplasia. Am J Hum Genet, 2007,81(4): 857~862 [25] Scheper G C, van der Klok T, van Andel R J, et al. Mitochondrial aspartyltRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation.Nat Genet, 2007, 39 (4): 534~539 [26] 't Hart L M, Hansen T, Rietveld I, et al. Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. Diabetes, 2005, 54 (6):1892~1895 [27] 朱斌,王恩多. 氨基酰tRNA 合成酶与神经退行性疾病. 生物化学与生物物理进展, 2007, 34(6): 562~566 Zhu B,Wang E D. Neurodegenerationrelated AminoacyltRNA Synthetases. Progress in Biochemistry and Biophysics, 2007, 34(6): 562~566
[1] 邓蕊,曾佳利,卢雪梅. 基于Musca domestica cecropin的抗肿瘤小分子衍生肽筛选及构效关系解析*[J]. 中国生物工程杂志, 2021, 41(11): 14-22.
[2] 郭芳,张良,冯旭东,李春. 植物源UDP-糖基转移酶及其分子改造*[J]. 中国生物工程杂志, 2021, 41(9): 78-91.
[3] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[4] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[5] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[6] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[7] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[8] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[9] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[10] 蔺士新,刘东晨,雷云,熊盛,谢秋玲. TNF-α纳米抗体的筛选、表达及特异性检测 *[J]. 中国生物工程杂志, 2020, 40(7): 15-21.
[11] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[12] 胡益波,皮畅钰,张哲,向柏宇,夏立秋. 丝状真菌蛋白表达系统研究进展*[J]. 中国生物工程杂志, 2020, 40(5): 94-104.
[13] 李炳娟,刘金锭,廖谊芳,韩文英,刘珂,侯晨露,张磊. 老黄酶OYE家族的蛋白质工程的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 163-169.
[14] 陈秋利,杨丽超,李辉,温莎,李刚,何敏. 人Nek2蛋白原核表达纯化及其多克隆抗体制备 *[J]. 中国生物工程杂志, 2020, 40(3): 31-37.
[15] 孙思,邱喻兰,颜菊荣,杨静,吴光英,王玲,胥文春. 重组质粒pcDNA3-dnaJ/蛋白DnaJ异源免疫诱导Th1和Th17细胞免疫应答抵抗肺炎链球菌感染 *[J]. 中国生物工程杂志, 2019, 39(12): 9-17.