Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (9): 79-84    
综述     
原核生物中蛋白质乙酰化修饰的研究进展
毕静, 张雪莲
复旦大学生命科学学院 上海 200433
Protein Acetylation in Prokaryotes
BI Jing, ZHANG Xue-lian
School of Life Sciences, Fudan University, Shanghai 200433, China
 全文: PDF(490 KB)   HTML
摘要: 近来发现,除组蛋白外,大量非组蛋白也存在赖氨酸乙酰化,并广泛参与细胞分化、细胞代谢等重要生理活动,赖氨酸乙酰化已成为生命科学领域研究的前沿热点。已有很多研究证据表明原核生物也普遍存在蛋白质乙酰化修饰现象,而且涉及中心代谢和中间代谢的很多代谢酶都存在乙酰化修饰现象。为更好了解乙酰化修饰在细菌中的重要性,对目前原核生物中蛋白质乙酰化修饰研究内容和最新进展进行综述,归纳原核生物蛋白赖氨酸位点的可逆乙酰化在中心代谢途径等重要生理活动中的调控作用。
关键词: 乙酰化 赖氨酸 原核生物    
Abstract: In addition to histones, recent evidences suggest many non-histone proteins are subject to lysine acetylation. Furthermore, lysine acetylation status has been shown to influence several fundamental cellular pathways, including cellular differentiation and metabolism. Protein lysine acetylation and its regulatory enzymes have thus emerged as a frontier for research in mammalian cells. Recent studies support that protein acetylation occurs prevalently in prokaryotes and broadly impacts prokaryotes physiology. An emerging theme from these studies is that metabolic enzymes involved in central metabolic pathways and intermediary metabolisms are subjected to acetylation. To explore more rapidly the impact of protein acetylation in bacteria, we will summarize the current examples of protein acetylation in prokaryotes, discuss the emerging link between acetylation and central metabolism and understand the importance of protein acetylation in bacteria.
Key words: Acetylation    Lysine    Prokaryote
收稿日期: 2013-02-25 出版日期: 2013-09-25
ZTFLH:  Q51  
基金资助: 国家自然基金资助项目(81261120558、30901828)
通讯作者: 张雪莲xuelianzhang@fudan.edu,cn     E-mail: xuelianzhang@fudan.edu,cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
毕静
张雪莲

引用本文:

毕静, 张雪莲. 原核生物中蛋白质乙酰化修饰的研究进展[J]. 中国生物工程杂志, 2013, 33(9): 79-84.

BI Jing, ZHANG Xue-lian. Protein Acetylation in Prokaryotes. China Biotechnology, 2013, 33(9): 79-84.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I9/79

[1] Phillips D M. The presence of acetyl groups of histones. Bioche J, 1963, 87: 258-263.
[2] Zhao S, Xu W, Jiang W, et al. Regulation of cellular metabolism by protein lysine acetylation. Science, 2010, 327: 1000-1004.
[3] Kim S C, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell, 2006, 23: 607-618.
[4] Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 2009, 325: 834-840.
[5] Yu B J, Kim J A, Moon J H, et al. The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol, 2008, 18: 1529-1536.
[6] Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science, 2010, 327:1004-1007.
[7] Dyda F, Klein D C, Hickman A B. GCN5-related N-acetyltransferases: a structural overview. Annu Rev Biophys Biomol Struct, 2000, 29: 81-103.
[8] Allis CD, Berger SL, Cote J, et al. New nomenclature for chromatin-modifying enzymes. Cell, 2007, 131:633-636.
[9] Vetting M W, Carvalho L P, Yu M, et al. Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys, 2005, 433: 212-226.
[10] Starai V J, Escalante-Semerena J C. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol, 2004, 340: 1005-1012.
[11] Tanaka S, Matsushita Y, Yoshikawa A, et al. Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Mol Gen Genet, 1989, 217: 289-293.
[12] Davies J, Wright G D. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol, 1997, 5: 234-240.
[13] Wang J, Chen J. SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. J Biol Chem, 2010, 285: 11458-11464.
[14] Thompson P R, Wang D, Wang L, et al. Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol, 2004, 11: 308-315.
[15] Barak R, Prasad K, Shainskaya A, et al. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J Mol Biol, 2004, 342: 383-401.
[16] Yang X J, Seto E. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol Cell Biol, 2008, 9: 206-218.
[17] Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem, 2004, 73: 417-435.
[18] Hildmann C, Riester D, Schwienhorst A. Histone deacetylases-an important class of cellular regulators with a variety of functions. Appl Microbiol Biotechnol, 2007, 75: 487-497.
[19] Tanaka S, Matsushita Y Y, Isono K. Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Mol Gen Genet, 1989, 217: 289-293.
[20] Yoshikawa A, Isono S, Sheback A, et al. Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol Gen Genet, 1987, 209: 481-488.
[21] Ramagopal S, Subramanian A R. Alteration in the acetylation level of ribosomal protein L12 during growth cycle of Escherichia coli. Proc Natl Acad Sci, 1974, 71: 2136-2140.
[22] Falb M, Aivaliotis M, Garcia-Rizo C, et al. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: A large-scale proteomics survey. J Mol Biol, 2006, 362: 915-924.
[23] Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and coregulates major cellular functions. Science, 2009, 325:834-840.
[24] Altman-Price N, Mevarech M. Genetic evidence for the importance of protein acetylation and protein deacetylation in the halophilic archaeon Haloferax volcanii. J Bacteriol, 2009, 191: 1610-1617.
[25] Schwer B, Eckersolorff M, Li Y, et al. Calorie restriction alters mitochondrial protein acetylation. Aging Cell, 2009, 8: 604-606.
[26] Nakagawa T, Lonb D J, Haigis M C, et al. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell, 2009, 137: 560-570.
[27] Hirschey M D, Shimazu T, Goetzmcen E, et al. SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature, 2010, 464: 121-125.
[28] Yu W, Lin Y, Yao J, et al. Lysine 88 acetylation negatively regulates ornithine carbamoyltransferase activity in reponse to nutrient signals. J Biol Chem, 2009, 284: 13669-13675.
[29] Cimen H, Han M J, Yang Y, et al. Regulation of succinate dehydrogenase activity by SIRT3 in mammalian mitochondria. Biochem, 2010, 49: 304-311.
[30] Gardner J G, Escalante-Semerena J C. In Bacillus subtilis, the sirtuin protein deacetylase, encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl coenzyme A synthetase. J Bacteriol, 2009, 191: 1749-1755.
[31] Crosby H A, Heiniger E K, Harwood C S, et al. Reversible N epsilon-lysine acetylation regulates the activity of acyl-CoA synthetases involved in anaerobic benzoate catabolism in Rhodopseudomonas palustris. Mol Mrcobio, 2010, 76: 874-888.
[32] Zhang Z P, Li R, Gu J, et al. Purification and characterization of the acetyl-CoA synthetase from Mycobacterium tuboculosis. Acta Biochim Biophys Sin, 2011, 43: 891-899.
[33] Nambi S, Basu N, Visweswariah S S. cAMP-regulated protein lysine acetylation in Mycobacteria. J Biol Chem, 2010, 285: 24313-24323.
[34] Xu H, Hegde S S, Blanchard J S. Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP. Biochem, 2011, 50: 5883-5892.
[35] Baker M D, Wolanin P M, Stock J B. Signal transduction in bacterial chemotaxis. Bioessays, 2006, 28: 9-22.
[36] Barak R, Welch M, Yanovsky A, et al. Acetyladenylate or its derivative acetylates the chemotaxis protein CheY in vitro and increases its activity at the flagellar switch. Biochem, 1992, 31: 10099-10107.
[37] Barak R, Eisenbach M. Co-regulation of acetylation and phosphorylation of CheY, a response regulator in chemotaxis of Escherichia coli. J Mol Biol, 2004, 342: 375-381.
[38] Barak R, Yan J, Shainskaya A, et al. The chemotaxis response regulator CheY can catalyze its own acetylation. J Mol Biol, 2006, 359: 251-265.
[39] Liarzi O, Barak R, Bronner V, et al. Acetylation represses the binding of CheY to its target proteins. Mol Microbio, 2010, 76: 932-943.
[40] Huang Y H, Ferrie` res L, Clarke D J. The role of the Rcs phosphorelay in Enterobacteriaceae. Res Microbiol, 2006, 157: 206-212.
[41] Majdalani N, Gottesman S. The Rcs phosphorelay: a complex signal transduction system. Annu Rev Microbiol, 2005, 59: 379-405.
[42] Thao S, Chen C S, Zhu H, et al. Nε lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity. PLoS One, 2010, 5, e15123.
[43] LaPorte D C, Thorsness P E, Koshland D E J. Compensatory phosphorylation of isocitrate dehydrogenase a mechanism for adaptation to the intracellular environment. J Biol Chem, 1985, 260: 10563-10568.
[44] Zhang J, Sprung R, Pei J, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics, 2009, 8: 215-225.
[45] Lee M E, Dyer D H, Klein O D, et al. Mutational analysis of the catalytic residues lysine 230 and tyrosine 160 in the NADP1-dependent isocitrate dehydrogenase from Escherichia coli. Biochem, 1995, 34: 378-384.
[46] Zhang Z, Tan M, Xie Z, et al. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol, 2011, 7: 58-63.
[47] Macek B, Gnad F, Soufi B, et al. Phosphoproteome analysis of E. coli reveals evolutionary conservation of bacterial Ser/Thr/Tyr phosphorylation. Mol Cell Proteomics, 2008, 7: 299-307.
[48] Boshoff H I, Barry C E. Tuberculosis metabolism and respiration in the absence of growth. Nat Rev Microbiol, 2005, 3: 70-80.
[49] Rhee K Y, de Carvalho L P, Bryk R, et al. Central carbon metabolism in Mycobacterium tuberculosis: an unexpected frontier. Trends Microbiol, 2011, 19, 307-314.
[50] Tasset C, Bernoux M, Jauneau A, et al. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog, 2010, 6: e1001202.
[51] Trosky J E, Li Y, Mukherjee S, et al. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases. J Biol Chem, 2007, 282: 34299-34305.
[1] 原博,王杰文,康广博,黄鹤. 双特异性纳米抗体的研究进展及其应用 *[J]. 中国生物工程杂志, 2021, 41(2/3): 78-88.
[2] 杨笑莹,李梦,赵威,唐敏,张志谦. 抗α2δ1/CD3双特异性抗体的制备和功能的初步研究 *[J]. 中国生物工程杂志, 2020, 40(7): 9-14.
[3] 褚宇琦,陆飞妃,刘洋,何芳,王大壮,陈立江. 蛋白冠与纳米粒子的相互作用 *[J]. 中国生物工程杂志, 2020, 40(4): 78-83.
[4] 唐馨,毛新芳,马彬云,苟萍. 抗菌肽的研究现状和挑战 *[J]. 中国生物工程杂志, 2019, 39(8): 86-94.
[5] 薛二淑,吴昊,宋倩倩,田开仁,乔建军,财音青格乐. 细菌中D-氨基酸生物合成及调控作用研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 106-113.
[6] 高倩,江洪,叶茂,郭文娟. 全球单克隆抗体药物研发现状及发展趋势 *[J]. 中国生物工程杂志, 2019, 39(3): 111-119.
[7] 方媛,徐广贤,王羡,王红霞,潘俊斐. 双峰驼源天然噬菌体纳米抗体展示库的构建及抗GDH纳米抗体筛选 *[J]. 中国生物工程杂志, 2018, 38(12): 49-56.
[8] 戈家傲,刘畅,龚建刚,刘艳琴. 抗菌环肽的研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 76-83.
[9] 李明英,王仁军,张帆,迟彦. β2糖蛋白Ⅰ第五结构域及其突变体、短肽片段的原核表达及活性分析 *[J]. 中国生物工程杂志, 2018, 38(8): 1-9.
[10] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[11] 杜凯,张卓玲,李婷华,饶微. 抗体固定化方法研究进展[J]. 中国生物工程杂志, 2018, 38(4): 78-89.
[12] 孟坤, 何庆瑜, 王通, 卢少华. 基于C6流式细胞仪平台应用FRET技术在活细胞中研究蛋白质相互作用[J]. 中国生物工程杂志, 2017, 37(5): 45-51.
[13] 徐云巧, 李婷婷, 吴彩娥, 范龚健, 李佟. 糖蛋白的去糖基化方法研究进展[J]. 中国生物工程杂志, 2017, 37(5): 97-106.
[14] 陈蓉, 杨帆, 成细瑶, 苏正定. 模拟α-螺旋多肽类似物抑制剂设计的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 89-97.
[15] 赵爽, 刘柳, 吴林寰, 马俊才. 谷氨酸棒状杆菌技术研发态势分析[J]. 中国生物工程杂志, 2016, 36(9): 101-109.