Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (9): 45-52    
技术与方法     
重组sTNFR1蛋白包涵体洗涤方法的研究
罗莉1, 秦娇荣2, 王明蓉2
1. 四川抗菌素工业研究所 成都 610052;
2. 成都生物制品研究所有限责任公司 成都 610023
Study on Washing Method of Recombinant sTNFR1IBs
LUO Li1, Qin2, Jiao-rong2
1. Sichuan Industrial Institute of Antibiotics, Chengdu 610052, China;
2. Chengdu Institute of Biological Products Co., Ltd., Chengdu 610023, China
 全文: PDF(1035 KB)   HTML
摘要: 目的:包涵体在变复性前通常需要用洗涤液多次重复洗涤以除去杂质,这种洗涤方式往往造成包涵体收率低或洗涤时间长或纯度不高,直接影响到重组蛋白产品最终的产量和质量。通过对sTNFR1包涵体的洗涤条件进行优化,以期指导该品种的工业化生产。方法:首先采用由脱氧胆酸钠和尿素组成的两因素五水平的析因设计,以洗涤后目的蛋白的含量为评价指标,进行方差分析,选出最优组合;通过对方差结果的分析提出不同于重复洗涤的分步洗涤方式,选出较优的分步洗涤方式;然后放大洗涤样品量,验证重复洗涤和分步洗涤的结果;另外,针对不同发酵批次和产量的样品,进一步验证比较重复洗涤和分步洗涤的效果。结果:重复洗涤的方差结果表明单独使用脱氧胆酸钠或尿素洗涤的产量优于两者的联合使用,但其纯度低于两者的联合使用,其中1mol/L尿素洗涤3次(W3组合)获得的目的产量最高;分步洗涤中2%脱氧胆酸钠洗涤第一次,2%脱氧胆酸钠+2mol/L尿素洗涤第二次的洗涤方式(FW6组合)既能有效提高目的蛋白纯度,又节约了时间,是较优的组合方式;同一发酵水平(约20%目的产量)不同规模样品(3g和50g)分别经过W3和FW6洗涤后,蛋白纯度提高到约26%和31%,且后者的目的收率高于前者,表明分步洗涤优于重复洗涤;针对不同发酵水平的样品(约10%和60%目的产量),分步洗涤的效果也优于重复洗涤,但对于低发酵水平的样品,分步洗涤对其纯度的提高更明显。结论:通过对该包涵体洗涤条件的摸索,找到一种较重复洗涤更有效的分步洗涤方法,既提高了目的纯度又节约了洗涤时间,为包涵体的洗涤提供了一种新的思路。
关键词: 包涵体脱氧胆酸钠尿素    
Abstract: Objective:Overexpression of recombinant protein in prokaryotic cell often results in the formation of aggregates called inclusion bodies(IBs). IBs need to be washed repeatedly before denaturing to remove impurities with one washing buffer, but it often result in low yield, long time, or low purity, which directly affect the yield and quality of the recombinant protein. By optimizing the washing condition of sTNFR1 IBs, its industrial production can be guided. Methods:First, screening one better way from the 25 repeat-washing buffers which composed of two factors——sodium deoxycholate and urea, and five levels in each factor, and the yield of target protein is as the evaluation index. Second, according to the ANOVA results of repeat-washing, a new step-washing method is proposed, which is different from the repeat-washing method. In addition, the above two different washing methods be compared by enlarging sample amount and different batches of fermentation. Results:ANOVA results of repeat-washing method showed that sodium deoxycholate or urea alone is superior to both, and W3(1mol/L Urea wash 3 times) obtain the highest yield of target protein. In step-washing method, FW6(2% sodium deoxycholate is used first and 2% sodium deoxycholate+2mol/L Urea is used in the second step) can effectively improve the purity of target protein and save time. The same batch of fermentation (about 20% target protein) of different scale sample (3g and 50g) washed by W3 and FW6, purity of target protein was increased to 26% and 31% respectively, and the later target protein yield is higher than the former. The results indicated that step-washing method is better than repeat-washing method. For the different level of fermentation sample (about 10% and 60% target protein), step-washing is better than repeat-washing and step-washing method can obviously improve the target protein purity for the low level of fermentation sample. Conclusion:A step-washing method which is more effective than the repeat-washing method is proposed by the optimization of IBs washing conditions, which improves the purity of target protein, saves the washing time, but also provides a new idea for IBs washing.
Key words: Inclusion bodies(IBs)    Sodium deoxycholate    Urea
收稿日期: 2013-05-10 出版日期: 2013-09-25
ZTFLH:  Q816  
基金资助: “十二五”重大新药创制科技重大专项课题资助项目(2011ZX09506-007)
通讯作者: 王明蓉mignrongw2007@163.com     E-mail: mignrongw2007@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
罗莉
秦娇荣
王明蓉

引用本文:

罗莉, 秦娇荣, 王明蓉. 重组sTNFR1蛋白包涵体洗涤方法的研究[J]. 中国生物工程杂志, 2013, 33(9): 45-52.

LUO Li, Qin, Jiao-rong, WANG Ming-rong. Study on Washing Method of Recombinant sTNFR1IBs. China Biotechnology, 2013, 33(9): 45-52.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I9/45

[1] White C B, Chen Q, Kenyon G L,et al.A novel activity of OmpT. Proteolysis under extreme denaturing conditions.J Biol Chem, 1995, 270(22): 12990-12994.
[2] Clark E D.Protein refolding for industrial processes.Curr Opin Biotechnol, 2001, 12(2): 202-207.
[3] Roussel G, Perpete E A, Matagne A,et al.Towards a universal method for protein refolding: The trimeric beta barrel membrane Omp2a as a test case.Biotechnol Bioeng, 2013, 110(2): 417-423.
[4] Das D, Jacobs F, Feldmann H,et al.Differential expression of the Ebola virus GP(1,2) protein and its fragments in E. coli.Protein Expr Purif, 2007, 54(1): 117-125.
[5] Jevevar S, Gaberc-Porekar V, Fonda I,et al.Production of nonclassical inclusion bodies from which correctly folded protein can be extracted.Biotechnol Progr, 2005, 21(2): 632-639.
[6] García-Fruitós E, González-Montalbán N, Morell M,et al.Aggregation as bacterial inclusion bodies does not imply inactivation of enzymes and fluorescent proteins.Microb Cell Fact, 2005, 4(1): 27-32.
[7] Peternel Š, Bele M, Gaberc-Porekar V,et al.Inclusion bodies contraction with implications in biotechnology.Acta Chim Slov, 2008, 55(3): 608-612.
[8] Carvajal P, Gibert J, Campos N,et al.Activity of maize transglutaminase overexpressed in Escherichia coli inclusion bodies:an alternative to protein refolding.Biotechnol Progr, 2011, 27(1): 232-240.
[9] Tsumoto K, Umetsu M, Kumagai I,et al.Solubilization of active green fluorescent protein from insoluble particles by guanidine and arginine.Biochem Biophys Res Commun, 2003, 312(4): 1383-1386.
[10] Tsuji I, Mastui H, Ito T,et al.L-cysteine-enhanced renaturation of bioactive soluble tumor necrosis factor ligand family member LIGHT from inclusion bodies in Escherichia coli.Protein Expres Purif, 2011, 80(2): 239-245.
[11] Peternel Š, Komel R.Isolation of biologically active nanomaterial(inclusion bodies) from bacterial cells.Microbial cell factories, 2010, 9(1): 66-81.
[1] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[2] 刘亚龙, 闫东明, 翁樑, 邹雪, 刘丹, 彭超, 苏亚南, 闫锦锦, 张静, 郭志燕. 重组大肠杆菌不耐热肠毒素B亚单位的中试发酵及纯化工艺[J]. 中国生物工程杂志, 2015, 35(2): 78-83.
[3] 秦玉红, 刘昆梅, 廖国玲, 杨华, 徐广贤, 李秀萍, 郭乐. 幽门螺旋杆菌重组尿素酶B亚基的纯化及其免疫学性质的研究[J]. 中国生物工程杂志, 2014, 34(12): 23-29.
[4] 苏燕南, 薛正莲, 陈涛, 马琦亚. 粘质沙雷氏菌PL-06磷脂酶A1基因大肠杆菌优化表达[J]. 中国生物工程杂志, 2013, 33(7): 36-42.
[5] 郭乐, 刘昆梅, 秦玉红, 李小康, 段相国, 杨华, 徐广贤, 奚涛. rCtUBE的生物信息学分析及其表达优化[J]. 中国生物工程杂志, 2013, 33(10): 44-50.
[6] 黄鹏煌, 王泽, 田海山, 赵海洋, 李海燕, 李校堃. 重组人成纤维细胞生长因子8b原核表达载体的构建和纯化研究[J]. 中国生物工程杂志, 2013, 33(1): 14-19.
[7] 罗莉, 何勇智, 张勇侠, 王明蓉. 功能性包涵体的研究进展[J]. 中国生物工程杂志, 2013, 33(1): 114-121.
[8] 李倩倩, 李中媛, 冯舵, 黄火清, 韩翠晓, 杨培龙, 姚斌, 高伟. 芽孢杆菌β-折叠桶植酸酶的原核可溶性表达优化及包涵体复性研究[J]. 中国生物工程杂志, 2012, 32(08): 49-55.
[9] 王振东, 王林林, 杨宇, 杨永莉, 王静. 委内瑞拉马脑炎病毒重组抗原的制备纯化及其胶体金免疫层析检测方法的建立[J]. 中国生物工程杂志, 2011, 31(7): 104-108.
[10] 李伟. 重组PLZF蛋白锌指结构域的表达、提纯和活性分析[J]. 中国生物工程杂志, 2011, 31(11): 1-5.
[11] 刘晓飞, 裴剑竹, 杜国俊, 杨章民. 蛇毒蛋白原核表达包涵体复性研究进展[J]. 中国生物工程杂志, 2011, 31(03): 113-119.
[12] 舒梅, 许杨, 徐熙, 涂追. 两种水生动物抗菌肽的原核表达及活性分析[J]. 中国生物工程杂志, 2011, 31(02): 56-61.
[13] 吴坤 冯娟 姚伦广 楚素霞 阚云超. 拯救细胞系恢复重组家蚕核型多角体病毒包涵体实现外源蛋白在家蚕中产业化生产[J]. 中国生物工程杂志, 2010, 30(05): 96-102.
[14] 王增1,马会勤1,张文1,陈尚武2. 包涵体蛋白的分离和色谱法体外复性纯化研究进展[J]. 中国生物工程杂志, 2009, 29(07): 102-107.
[15] 甘慧,周勇,王全立,詹林盛. 补体C3与BPI活性区融合蛋白(CB)的构建与表达[J]. 中国生物工程杂志, 2007, 27(6): 31-37.