Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (8): 61-66    
技术与方法     
人工sRNAs沉默csrA基因以优化大肠杆菌生产L-酪氨酸
姚元锋, 赵莹, 赵广荣
天津大学化工学院制药工程系 系统生物工程教育部重点实验室 天津 300072
Artificial sRNAs Silencing csrA to Optimize the Production of L-tyrosine in Escherichia coli
YAO Yuan-feng, ZHAO Ying, ZHAO Guang-rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
 全文: PDF(1020 KB)   HTML
摘要: sRNAs作为一种强有力的基因表达调控工具,在真核生物中得到了广泛的应用。随着微生物中sRNAs的不断发现以及其调控机制的逐渐明确,新近开发的人工sRNA工程在微生物代谢工程的改造上也展现了巨大的优势。通过对大肠杆菌负调控L-酪氨酸生物合成途径的碳贮藏调控因子(csrA)基因的sRNAs进行了人工设计和筛选,分析了对L-酪氨酸合成的影响。结果表明,所设计的sRNA能有效提高L-酪氨酸的合成,较高拷贝数的短anti-csrA sRNA2比较长的sRNA1 更有效,使L-酪氨酸产量提高了1.2倍。sRNA工程技术是一种有效的负调控全局代谢途径的策略,其在合成生物学以及微生物细胞工厂构建上必将有着更广泛的应用。
关键词: 人工sRNAs基因沉默csrAL-酪氨酸    
Abstract: As a powerful gene regulation tool, small regulatory RNAs (sRNAs) have been widely applied in animals and plants. Recently, with the continual founding of different sRNAs and the understanding about their regulatory mechanisms in bacteria, the new developed artificial sRNAs engineering also shows a huge advantage on the microbial metabolic engineering. Carbon storage regulator (CsrA) is a post-transcriptional global regulator that has a negative role in the L-tyrosine biosynthetic pathway. By designing and screening sRNAs sequence of csrA, its effect on the L-tyrosine production in E. coli was analyzed. The results indicated that the artificial sRNAs could lead to remarkable increase of L-tyrosine production. High copy number expression of shorter anti-csrA sRNA2 which improved 1.2-fold L-tyrosine production was better than the longer sRNA1. This new strategy, being simple yet very powerful for global metabolic regulation, is thus expected to facilitate the efficient development of synthetic biology and microbial cell factories.
Key words: Artificial sRNAs    Gene silencing    csrA gene    L-tyrosine
收稿日期: 2013-05-02 出版日期: 2013-08-25
ZTFLH:  Q819  
基金资助: 国家"973"计划(2011CBA00800);国家"863"计划(2012AA02A701);天津市自然科学基金重点项目(13JCZDJC27600)资助项目
通讯作者: 赵广荣grzhao@tju.edu.cn     E-mail: grzhao@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
姚元锋
赵莹
赵广荣

引用本文:

姚元锋, 赵莹, 赵广荣. 人工sRNAs沉默csrA基因以优化大肠杆菌生产L-酪氨酸[J]. 中国生物工程杂志, 2013, 33(8): 61-66.

YAO Yuan-feng, ZHAO Ying, ZHAO Guang-rong. Artificial sRNAs Silencing csrA to Optimize the Production of L-tyrosine in Escherichia coli. China Biotechnology, 2013, 33(8): 61-66.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I8/61

[1] Romeo T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Molecular Microbiology, 1998,29(6):1321-1330.
[2] Tatarko M, Romeo T. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Current Microbiology, 2001,43(1):26-32.
[3] Timmermans J, Van Melderen L. Conditional essentiality of the csrA gene in Escherichia coli. Journal of Bacteriology, 2009,191(5):1722-1724.
[4] Svetlana A S, Eugene V K. Origins and evolution of eukaryotic RNA interference. Trends in Ecology & Evolution, 2008,22(10)578-587.
[5] Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques, 2008,44(5):613-616.
[6] Carothers J M, Goler J A, Juminaga D, et al. Model-driven engineering of RNA devices to quantitatively program gene expression. Science, 2011,334(6063):1716-1719.
[7] Isaacs F J, Dwyer D J, Ding C, et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 2004,22(7):841-847.
[8] Saito H, Inoue T. Synthetic biology with RNA motifs. International Journal of Biochemistry & Cell Biology, 2009,41(2):398-404.
[9] Kang Z, Wang X, Li Y, et al. Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli. Biotechnology Letters, 2012,34(3):527-531.
[10] Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol, 2004,58(1):303-328.
[11] Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008,322(5900):456-460.
[12] Man S, Cheng R, Miao C, et al. Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Research, 2011,39(8):e50.
[13] Sharma V, Yamamura A, Yokobayashi Y. Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synthetic Biology, 2011,1(1):6-13.
[14] Dokyun N, Yoo S M, Chung H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature Biotechnology, 2013,31(2):170-174.
[15] Neidhardt F C, Bloch P L, Smith D F. Culture medium for enterobacteria. Journal of Bacteriology, 1974,119(3):736-747.
[16] Markham N R, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Research, 2005,33(suppl 2):577-581.
[17] Valentin-Hansen P, Eriksen M, Udesen C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Molecular Microbiology, 2004,51(6):1525-1533.
[18] Lease R A, Woodson S A. Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. Journal of Molecular Biology, 2004,344(5):1211-1223.
[19] Urban J H, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Research, 2007,35(3):1018-1037.
[20] Chen S, Zhang A, Blyn L B, et al. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. Journal of Bacteriology, 2004,186(20):6689-6697.
[21] 许德晖,黄辰,刘利英,等.高效siRNA设计的研究进展.遗传,2006, 28(11): 1457-1461. Xu D H, Huang C, Liu L Y, et al. New progress of the high efficient siRNA design. Hereditas, 2006,28(11):1457-1461.
[22] Flintoft L. Synthetic biology: Small RNAs improve metabolic engineering. Nature Reviews Genetics, 2013,14(3):155.
[1] 谢琳娜,曾燕华,柯伙钊,何文胜,郑敏,林德馨. 在肝癌细胞SK-Hep1中沉默STAT3基因增强sorafenib疗效的初步研究*[J]. 中国生物工程杂志, 2017, 37(12): 8-13.
[2] 权美玉, 郭强, 张坤水, 方瑞, 李翠琳, 杜军. 稳定高表达和干扰Nodal基因黑色素瘤细胞株构建及EMT表型鉴定[J]. 中国生物工程杂志, 2014, 34(3): 1-8.
[3] 马浪浪, 江舟, 黄小波, 沈亚欧, 潘光堂. 植物DNA甲基化调控研究进展[J]. 中国生物工程杂志, 2013, 33(9): 101-110.
[4] 周露, 董春娟, 刘进元. 人工microRNA干扰DREB亚族A-5组转录抑制子基因增强了拟南芥对低温和高盐胁迫的耐受性[J]. 中国生物工程杂志, 2011, 31(5): 34-41.
[5] 周露 董春娟 刘进元. 针对DREB亚族A-5组转录抑制子的人工microRNA的构建[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[6] 叶梅霞 刘军梅 李昊 崔东清 王静澄 张志毅 安新民. amiRNAi-实现高效稳定的特异基因沉默新方法[J]. 中国生物工程杂志, 2010, 30(08): 118-125.
[7] 傅达奇, 朱本忠, 赵晓丹, 朱鸿亮, 罗云波. 植物中病毒诱导基因沉默的研究进展[J]. 中国生物工程杂志, 2005, 25(S1): 62-66.
[8] 黄冰艳, 吉万全, 郭蔼光, SadequrR, 李忠宜. 转录后基因沉默(PTGS)及其在作物遗传改良中的应用[J]. 中国生物工程杂志, 2005, 25(5): 1-5.
[9] 黄慧珍, 陈士云, 吉万全, 王瑶. 核基质附着区与转基因表达[J]. 中国生物工程杂志, 2004, 24(9): 2-6.
[10] 王豫颖, 付畅, 孙成, 黄永芬. 转基因植物转录后基因沉默机制及克服策略[J]. 中国生物工程杂志, 2004, 24(6): 43-47.
[11] 毛琼国, 白云. 提高转基因表达策略研究进展[J]. 中国生物工程杂志, 2004, 24(10): 9-12.
[12] 陈颖, 朱明华. RNA干扰[J]. 中国生物工程杂志, 2003, 23(3): 39-43.
[13] 周晓馥, 肖乃仲, 白云峰, 王兴智. 植物功能基因组学的研究策略[J]. 中国生物工程杂志, 2002, 22(6): 13-17.
[14] 朱国萍, 徐冲. 植物生物反应器生产绿色疫苗研究进展[J]. 中国生物工程杂志, 2002, 22(2): 70-73.
[15] 程海鹏, 朱睦元, 金伟, 边红武. 植物转基因沉默研究进展[J]. 中国生物工程杂志, 2001, 21(6): 47-49.