Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (8): 51-55    
研究报告     
柠檬酸钠促进S-腺苷蛋氨酸和谷胱甘肽联合高产
王玉磊, 朱健, 卫功元, 许宏庆, 汪成富
苏州大学医学部基础医学与生物科学学院 苏州 215123
Increased Co-production of S-adenosylmethionine and Glutathione by Sodium Citrate Addition
WANG Yu-lei, ZHU Jian, WEI Gong-yuan, XU Hong-qing, WANG Cheng-fu
School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
 全文: PDF(708 KB)   HTML
摘要:

考察了柠檬酸钠对S-腺苷蛋氨酸(SAM)和谷胱甘肽(GSH)联产发酵的影响,发现柠檬酸钠有利于SAM和GSH的联合高产。采用响应面分析法对柠檬酸钠浓度及其添加时间进行优化,模型预测和验证实验结果均表明在联产发酵6 h时一次性添加10 g/L柠檬酸钠的效果最佳。通过对SAM和GSH联产发酵过程进行分析,发现柠檬酸钠能够显著提高胞内NADH和ATP的水平,为SAM和GSH的过量合成提供了足够的能量物质,也为类似耗能化合物的生物合成及其发酵高产提供了可行的优化策略。

关键词: S-腺苷蛋氨酸谷胱甘肽ATP联产发酵柠檬酸钠    
Abstract:

S-adenosylmethionine (SAM) and glutathione (GSH) are both important small S-contained compounds in cells. The effects of sodium citrate on the fermentative co-production of SAM and GSH with Candida utilis CCTCC M 209298 were investigated in flasks. Sodium citrate was found to be beneficial for the high co-production of SAM and GSH. The response surface analysis was applied in the optimization of sodium citrate concentration and addition time, and a strategy of 10 g/L sodium citrate addition at 6 h was predicted by a statistical model and verified to be the best approach for increased co-production of SAM and GSH. Based on the results derived from the kinetic analysis on the batch fermentation processes, intracellular levels of NADH and ATP could be significantly improved by sodium citrate, and which in turn provided essential energy substance needed for the over-production of SAM and GSH. The results also provide a potential approach for efficient production of analogical useful chemicals biosynthesized with the consumption of energy.

Key words: S-adenosylmethionine    Glutathione    ATP    Co-production    Sodium citrate
收稿日期: 2013-01-07 出版日期: 2013-08-25
ZTFLH:  TQ464.7  
基金资助:

国家自然科学基金(20906065)资助项目

通讯作者: 卫功元weigy@suda.edu.cn     E-mail: weigy@suda.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王玉磊
朱健
卫功元
许宏庆
汪成富

引用本文:

王玉磊, 朱健, 卫功元, 许宏庆, 汪成富. 柠檬酸钠促进S-腺苷蛋氨酸和谷胱甘肽联合高产[J]. 中国生物工程杂志, 2013, 33(8): 51-55.

WANG Yu-lei, ZHU Jian, WEI Gong-yuan, XU Hong-qing, WANG Cheng-fu. Increased Co-production of S-adenosylmethionine and Glutathione by Sodium Citrate Addition. China Biotechnology, 2013, 33(8): 51-55.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I8/51

[1] Mato J M, Alvarez L, Ortiz P, et al. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacology & Therapeutics, 1997, 77(3): 265-280.
[2] Li Y, Wei G Y, Chen J. Glutathione: a review on biotechnological production. Applied Microbiology and Biotechnology, 2004, 66(3): 233-242.
[3] Shiozaki S, Shimizu S, Yamada H. Production of S-adenosyl-l-methionine by Saccharomyces sake. Journal of Biotechnology, 1986, 4(6): 345-354.
[4] 王玉磊, 叶子优, 贺秋萍, 等. S-腺苷蛋氨酸和谷胱甘肽联产发酵中盐胁迫的作用. 生物加工过程, 2012, 10(3): 33-38. Wang Y L, Ye Z Y, He Q P, et al. Co-production of S-adenosylmethionine and glutathione under salt-stress by Candida utilis. Chinese Journal of Bioprocess Engineering, 2012, 10(3): 33-38.
[5] Brosnan J T, Brosnan M E, Bertolo R F P, et al. Methionine: a metabolically unique amino acid. Livestock Science, 2007, 112(1): 2-7.
[6] 邵娜, 卫功元, 葛晓光, 等. 紫外线-γ射线复合诱变筛选S-腺苷甲硫氨酸和谷胱甘肽联产发酵菌株. 辐射研究与辐射工艺学报, 2010, 28(2): 107-113. Shao N, Wei G Y, Ge X G, et al.Complex mutagenesis of Candida utilis by UV and γ-rays for the co-production of S-adenosyl-L-methionine and glutathione. Journal of Radiation Research and Radiation Process, 2010, 28(2): 107-113.
[7] 王玉磊, 卫功元, 邵娜, 等. 基于能量代谢分析的S-腺苷蛋氨酸和谷胱甘肽联合高产方法. 化工学报, 2012, 63(1): 223-229. Wang Y L, Wei G Y, Shao N, et al. Strategy for enhanced co-production of S-adenosylmethionine and glutathione by Candida utilis based on energy metabolic analysis. Journal of Chemical Industry and Engineering, 2012, 63(1): 223-229.
[8] Liang G, Liao X, Du G, et al. Elevated glutathione production by adding precursor amino acids coupled with ATP in high cell density cultivation of Candida utilis. Journal of Applied Microbiology, 2008, 105(5): 1432-1440.
[9] 秦义, 董志姚, 刘立明, 等. 工业微生物中NADH的代谢调控. 生物工程学报, 2009, 25(2): 161-169. Qin Y, Dong Z Y, Liu L M, et al. Manipulation of NADH metabolism in industrial strains. Chinese Journal of Biotechnology, 2009, 25(2): 161-169.
[10] Zhou J, Liu L, Shi Z, et al. ATP in current biotechnology: regulation, application and perspectives. Biotechnology Advance, 2009, 27(1): 94-101.
[11] Zhou J, Liu L, Chen J. Improved ATP supply enhances acid tolerance of Candida glabrata during pyruvic acid production. Journal of Applied Microbiology, 2011, 110(1): 44-53.
[12] Sanchez C, Neves A R, Cavalheiro J, et al. Contribution of citrate metabolism to the growth of Lactococcus lactis CRL264 at low pH. Applied and Environmental Microbiology, 2008, 74: 1136-1144.
[13] Miller G. Use of 3, 5-dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 1959, 31: 426-428.
[14] Shiozaki S, Shimizu S, Yamada H. S-adenosyl-l-methionine production by Saccharomyces sake: optimization of the culture conditions for the production of cells with a high S-adenosyl-l-methionine content. Agricultural Biology and Chemistry, 1989, 53(12): 3269-3274.
[15] Penninckx M J. An overview on glutathione in Saccharomyces versus non-conventional yeasts. FEMS Yeast Research, 2002, 2: 295-305.

[1] 李潇瑾,李艳萌,李振坤,徐安健,杨晓曦,黄坚. 基于转录组测序探究ATP7B基因缺陷小鼠铜累积诱导肝细胞自噬的相关机制*[J]. 中国生物工程杂志, 2021, 41(9): 10-19.
[2] 李志刚,顾阳,谭海,张中华,常景玲. 氨茶碱与柠檬酸盐协同作用促进环磷酸腺苷发酵生产[J]. 中国生物工程杂志, 2021, 41(7): 50-57.
[3] 张艳芳, 孙瑞芬, 郭树春, 侯建华. 向日葵V-ATPase a3亚基基因的克隆及表达分析[J]. 中国生物工程杂志, 2017, 37(5): 19-27.
[4] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.
[5] 翟兵兵, 马倩, 丁明珠, 元英进. 谷胱甘肽对VC一步发酵作用的研究[J]. 中国生物工程杂志, 2016, 36(8): 38-45.
[6] 胡燕珍, 卫军营, 罗光明. 谷胱甘肽在肝脏疾病相关信号通路中的作用及研究进展[J]. 中国生物工程杂志, 2015, 35(10): 72-77.
[7] 王玮玮, 唐亮, 周文龙, 杨燕, 高波, 赵云峰, 王伟. 谷胱甘肽生物合成及代谢相关酶的研究进展[J]. 中国生物工程杂志, 2014, 34(7): 89-95.
[8] 王程, 隋春红, 闫岗林, 吕绍武, 牟颖. 含硒抗病毒多肽的半胱氨酸缺陷型表达及鉴定[J]. 中国生物工程杂志, 2014, 34(4): 16-20.
[9] 罗二梅, 宇丽, 张家文, 柳菁. 还原型谷胱甘肽对人脐带间充质干细胞成软骨诱导的影响[J]. 中国生物工程杂志, 2013, 33(3): 1-8.
[10] 陈永露, 吴绵斌, 林建平, 杨立荣, 岑沛霖. GshF在大肠杆菌中的表达及酶学性质研究[J]. 中国生物工程杂志, 2013, 33(12): 21-28.
[11] 王大慧, 许宏庆, 汪成富, 卫功元. 酸胁迫在提升富硒/GSH产朊假丝酵母性能中的作用[J]. 中国生物工程杂志, 2013, 33(11): 81-85.
[12] 闫相如, 林丽萍, 何名芳, 陈卫平. 固定化对酵母细胞发酵产ATP能力的影响[J]. 中国生物工程杂志, 2012, 32(07): 102-106.
[13] 张博, 李铁民, 杨智勇, 胡永飞, 李玉. 谷氨酸棒杆菌H+-ATPase基因失活提高谷氨酸产生量[J]. 中国生物工程杂志, 2011, 31(01): 35-39.
[14] 刘冠兰 李甜 刘进元 严泽民 段明星. 原核表达的萝卜PHGPx和谷胱甘肽对NIH3T3细胞氧化损伤的联合保护作用[J]. 中国生物工程杂志, 2010, 30(09): 13-18.
[15] 朱路 龙全科 刘海峰 鲁明波 胡媛 石佑恩 余龙江. 日本血吸虫三价DNA疫苗pVIVO2SjFABP/Sj26.SjGAPDH的构建及其免疫保护作用评价[J]. 中国生物工程杂志, 2010, 30(05): 36-42.