Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (6): 99-104    
综述     
基因组编辑技术在植物中的研究进展与应用前景
谢科1,2, 饶力群3, 李红伟1,2, 安学丽1,2, 方才臣1,2,4, 万向元1,2,3,4
1. 主要农作物种质创新国家重点实验室 北京 100192;
2. 北京金冠丰生物技术有限公司 北京 100192;
3. 湖南农业大学生物科学技术学院 长沙 410128;
4. 山东冠丰种业科技有限公司 冠县 252500
Research Progress of Genome Editing in Plants
XIE Ke1,2, RAO Li-qun3, LI Hong-wei1,2, AN Xue-li1,2, FANG Cai-chen1,2,4, WAN Xiang-yuan1,2,3,4
1. State Key Laboratory of Main Crop Germplasm Innovation, Beijing 100192, China;
2. Beijing Golden Guanfeng Bio-tech Co., LTD, Beijing 100192, China;
3. Hunan Agricultural University, College of Bioscience and Biotechnology, Changsha 410128, China;
4. Shandong Guanfeng Seed Science and Technology Co., LTD, Guanxian 252500, China
 全文: PDF(579 KB)   HTML
摘要:

外源DNA导入细胞并与基因组靶基因发生同源重组可以精确修饰或替换靶基因,但在植物中产生自发同源重组的概率很低。近几年出现的人工改造核酸酶可以大幅提高同源重组的效率,实现基因组的精确、定向改造。其中,归巢核酸酶、锌指核酸酶和TALE核酸酶已在植物基因工程中得到成功应用,最近开发出来的基于CRISPR/Cas系统的基因组编辑技术则更具有高效方便等特点。这些人工核酸酶的应用为植物基因工程的发展呈现了更加美好的前景。首先介绍了基因组编辑技术及其发展历程,随后详细阐述了提高植物基因组定点编辑效率的策略,最后对基因组编辑技术在农业和植物基因工程上的应用进行了展望。

关键词: 植物基因工程基因组编辑同源重组人工核酸酶    
Abstract:

The precise insertion of a foreign DNA molecule at genome through homologous recombination remains low efficiency in plants. Genome editing is an important tool to precisely integrate DNA molecules at a defined genomic location. Extensive efforts have been made to understand the mechanisms governing gene targeting and to establish efficient systems to achieve precise and efficient targeting. A set of genome editing techniques, engineered meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, have recently emerged that enable targeted editing of genomes in plants. The recent development of genome editing technique based on the CRISPR/Cas system demonstrate that it is efficient and specific for wide application. The rapid progress in the field of genome editing was summarized, and then the potential perspective of the genome editing technology to be used in agriculture and plant engineering was discussed.

Key words: Plant genome engineering    Genome editing    Homologous recombination    Engineered nuclease
收稿日期: 2013-05-02 出版日期: 2013-06-25
ZTFLH:  Q819  
基金资助:

国家"973"计划(2010CB35702、2012CB723703);国家发改委生物育种专项(2012-2150299);山东省自主创新工程招标项目(2012SD09101-1)资助项目

通讯作者: 万向元     E-mail: wanxy2005@163.com; xiangyuan.wan@gfseed.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
谢科
饶力群
李红伟
安学丽
方才臣
万向元

引用本文:

谢科, 饶力群, 李红伟, 安学丽, 方才臣, 万向元. 基因组编辑技术在植物中的研究进展与应用前景[J]. 中国生物工程杂志, 2013, 33(6): 99-104.

XIE Ke, RAO Li-qun, LI Hong-wei, AN Xue-li, FANG Cai-chen, WAN Xiang-yuan. Research Progress of Genome Editing in Plants. China Biotechnology, 2013, 33(6): 99-104.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I6/99

[1] Thomas K R, Capecchi M R. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell, 1987, 51: 503-512.
[2] Doetschman T, Gregg R G, Maeda N, et al. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature, 1987, 330: 576-578.
[3] Lloyd A, Plaisier C L, Carroll D, et al. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A, 2005, 102: 2232-2237.
[4] Gherbi H, Gallego M E, Jalut N, et al. Homologous recombination in planta is stimulated in the absence of Rad50. EMBO Rep, 2001, 2: 287-291.
[5] Fritsch O, Benvenuto G, Bowler C, et al. The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell, 2004, 16: 479-485.
[6] Shaked H, Melamed-Bessudo C, Levy A A. High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci U S A, 2005, 102: 12265-12269.
[7] Puchta H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot, 2005, 56: 1-14.
[8] Mansour S L, Thomas K R, Capecchi M R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature, 1988, 336: 348-352.
[9] Puchta H, Dujon B, Hohn B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci U S A, 1996, 93: 5055-5060.
[10] Tzfira T, Frankman L R, Vaidya M, et al. Site-specific integration of Agrobacterium tumefaciens T-DNA via double-stranded intermediates. Plant Physiol, 2003, 133: 1011-1023.
[11] Gao H, Smith J, Yang M, et al. Heritable targeted mutagenesis in maize using a designed endonuclease. Plant J, 2010, 61: 176-187.
[12] Bibikova M, Carroll D, Segal D J, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol, 2001, 21: 289-297.
[13] Shukla V K, Doyon Y, Miller J C, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature, 2009, 459: 437-441.
[14] Townsend J A, Wright D A, Winfrey R J, et al. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 2009, 459: 442-445.
[15] Morbitzer R, Romer P, Boch J, et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A, 2010, 107: 21617-21622.
[16] Cermak T, Doyle E L, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res, 2011, 39: e82.
[17] Li T, Liu B, Spalding M H, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol, 2012, 30: 390-392.
[18] Zhang Y, Zhang F, Li X, et al. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol, 2013, 161: 20-27.
[19] Baker M. Gene-editing nucleases. Nat Methods, 2012, 9: 23-26.
[20] Alberts B. The breakthroughs of 2012. Science, 2012, 338: 1511.
[21] Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43: 1565-1575.
[22] Godde J S, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes: evidence of horizontal transfer among prokaryotes. Journal of Molecular Evolution, 2006, 62: 718-729.
[23] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8: 172.
[24] Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet, 2011, 45: 273-297.
[25] Terns M P, Terns R M. CRISPR-based adaptive immune systems. Curr Opin Microbiol, 2011, 14: 321-327.
[26] Sapranauskas R, Gasiunas G, Fremaux C, et al. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 2011, 39: 9275-9282.
[27] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337: 816-821.
[28] Deltcheva E, Chylinski K, Sharma C M, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, 2011, 471: 602-607.
[29] Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A, 2012, 109:2579-2586.
[30] Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339: 819-823.
[31] Mali P, Yang L, Esvelt K M, et al. RNA-guided human genome engineering via Cas9. Science, 2013, 339: 823-826.
[32] Jinek M, East A, Cheng A, et al. RNA-programmed genome editing in human cells. eLife, 2013, 2: e00471.
[33] Chang N, Sun C, Gao L, et al. Genome editing with RNA-guided Cas9 nuclease in zebrafish embryos. Cell Res, 2013, 23: 465-472.
[34] Hwang W Y, Fu Y, Reyon D, et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 2013, 31: 227-229.
[35] Dicarlo J E, Norville J E, Mali P, et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41: 4336-4343.

[1] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[2] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[3] 王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.
[4] 战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.
[5] 栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92.
[6] 陈建武, 任红艳, 华文君, 刘西梅, 綦世金, 周黎, 欧阳艳, 毕延震, 杨烨, 郑新民. 一种用于提高基因打靶效率的双荧光筛选策略[J]. 中国生物工程杂志, 2017, 37(1): 58-63.
[7] 张祎祎, 吴嫣爽, 孙瑞珍, 雷蕾. CRISPR/Cas9介导的疾病模型构建与基因修复研究进展[J]. 中国生物工程杂志, 2016, 36(12): 98-103.
[8] 郝梓凯, 李丕武, 郝昭程, 陈利飞. 敲除frdB基因对大肠杆菌厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2014, 34(11): 67-75.
[9] 马怀远, 黄非, 白林含. 利用同源重组的方法提高大肠杆菌W3110天冬氨酸的积累[J]. 中国生物工程杂志, 2014, 34(06): 61-67.
[10] 葛高顺, 张立超, 赵昕, 胡学军, 李雅杰. 大肠杆菌基因组基因无痕敲除的优化方法[J]. 中国生物工程杂志, 2014, 34(06): 68-74.
[11] 刘思也, 夏海滨. 一种新的由CRISPR/Cas系统介导的基因组靶向修饰技术[J]. 中国生物工程杂志, 2013, 33(10): 117-123.
[12] 宋芸, 乔永刚, 李贵全. 锌指核酸酶技术在植物基因工程中的应用[J]. 中国生物工程杂志, 2013, 33(1): 109-113.
[13] 樊祥宇, 谢建平. 分枝杆菌噬菌体重组系统及其应用[J]. 中国生物工程杂志, 2012, 32(09): 101-106.
[14] 闫继爱 张雪 张芸 左佃光 陈宁 温廷益. 利用Red同源重组技术构建产L-苏氨酸的基因工程菌[J]. 中国生物工程杂志, 2010, 30(03): 79-84.
[15] 田琳,李玉,史文玉,戴永鑫,路福平,王建玲,杜连祥. 分枝杆菌甾酮C1,2位脱氢酶基因敲除的研究[J]. 中国生物工程杂志, 2007, 27(5): 39-44.