Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (6): 52-61    
研究报告     
培养基中铁离子对枯草芽孢杆菌CICC 23659发酵产脂肽的影响研究
黄翔峰, 詹鹏举, 彭开铭, 刘佳, 陆丽君
同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
Study on the Influence of Iron Dosage in the Medium on Fermentation of Lipopeptide Produced by Bacillus subtilis CICC 23659
HUANG Xiang-feng, ZHAN Peng-ju, PENG Kai-ming, LIU Jia, LU Li-jun
State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
 全文: PDF(1996 KB)   HTML
摘要:

高性能的生物表面活性剂脂肽在医药、食品、化妆品及微生物采油等领域具有广泛的应用价值。利用高效液相色谱法和电喷雾质谱法分析了Bacillus subtilis CICC 23659所产脂肽的组成,结果表明其所产脂肽是由surfactin的同系物C13、C14和C15组成,其分子量分别为1008、1022和1036。以生物量、脂肽产量、脂肽组成、乳化能力和临界胶束浓度等指标考察在培养基中投加不同浓度的Fe2+B. subtilis CICC 23659的影响,结果表明添加Fe2+不仅能够提高B. subtilis CICC 23659的生物量,还能大幅提高脂肽产量。当Fe2+添加浓度为5 mmol/L时,生物量达到最大3.69 g/L,提高了6倍,脂肽产量也达到最大234.08 mg/L,提高了9.5倍。Fe2+作用下脂肽同系物中C13、C14、C15在脂肽产物中的相对含量发生了变化,脂肽同系物C13和C15的相对含量降低,脂肽同系物C14的相对含量上升。脂肽同系物中C13的相对含量越高,CMC值越大,脂肽同系物中C14和C15的相对含量越高,CMC值则越小。

关键词: 枯草芽孢杆菌金属离子脂肽乳化能力临界胶束浓度    
Abstract:

The lipopeptide, a high performance biosurfactant, has a wide range of applications in areas such as medicine, food, cosmetics and microbial enhanced oil recovery. HPLC and ESI-MS were used to identify the composition of lipopeptide produced by B. subtilis CICC 23659 and the product of B. subtilis CICC 23659 was identified as surfactin which included lipopeptide homologues C13, C14 and C15. The index of biomass, lipopeptide yield, lipopeptide composition, emulsion index and critical micelle concentration were used to evaluate the influence of Fe2+ on fermentation of lipopeptide for B. subtilis CICC 23659. The addition of Fe2+ could not only improve the biomass of B. subtilis CICC 23659 but also substantially increase the yield of lipopeptide. When the addition of Fe2+ was 5 mmol/L, the maximum yield of biomass and lipopeptide was 3.69 g/L (6 times increased) and 234.08 mg/L (9.5 times increased), respectively. The addition of Fe2+ changed the relative content of lipopeptide homologues C13, C14 and C15 in the lipopeptide product, the relative content of lipopeptide homologues C13 and C15 decreased and lipopeptide homologues C14 increased. The relative content of lipopeptide homologues C13 was higher, the CMC value of crude surfactin was bigger and the lipopeptide homologues C14、C15 had the opposite influence.

Key words: Bacillus subtilis    Metal ions    Lipopeptide    Emulsion index    Critical micelle concentration
收稿日期: 2012-11-21 出版日期: 2013-06-25
ZTFLH:  Q819  
基金资助:

国家自然科学基金(50908166,51108333);中央高校基本科研业务费专项资金(0400219208)资助项目

通讯作者: 陆丽君     E-mail: lulijun@tongji.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄翔峰
詹鹏举
彭开铭
刘佳
陆丽君

引用本文:

黄翔峰, 詹鹏举, 彭开铭, 刘佳, 陆丽君. 培养基中铁离子对枯草芽孢杆菌CICC 23659发酵产脂肽的影响研究[J]. 中国生物工程杂志, 2013, 33(6): 52-61.

HUANG Xiang-feng, ZHAN Peng-ju, PENG Kai-ming, LIU Jia, LU Li-jun. Study on the Influence of Iron Dosage in the Medium on Fermentation of Lipopeptide Produced by Bacillus subtilis CICC 23659. China Biotechnology, 2013, 33(6): 52-61.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I6/52

[1] Mukherjee S, Das P, Sen R. Rapid quantification of a microbial surfactant by a simple turbidometric method. Journal of Microbiological Methods, 2009, 76(1):38-42.
[2] Peypoux F, Bonmatin J, Wallach J. Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 1999, 51(5):553-563.
[3] Tulin E E, Amaki Y, Nagasawa T, et al. A Bacillus stearothermophilus esterase produced by a recombinant Bacillus brevis stabilized by sulfhydryl compounds. Bioscience, Biotechnology and Biochemistry, 1993, 57(5):856-857.
[4] Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5):495-508.
[5] Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnology, 2006, 24(11):509-515.
[6] Cooper D G, Macdonald C R, Duff S J B, et al. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied and Environmental Microbiology, 1981, 42(3):408-412.
[7] Al-Ajlani M M, Sheikh M A, Ahmad Z, et al. Production of surfactin from Bacillus subtilis MZ-7 grown on pharmamedia commercial medium. Microbial Cell Factories, 2007, 6(1):17.
[8] Rangarajan V, Dhanarajan G, Kumar R, et al. Time-dependent dosing of Fe2+ for improved lipopeptide production by marine Bacillus megaterium. Journal of Chemical Technology and Biotechnology, 2012,87(12):1661-1669.
[9] 方传记, 陆兆新, 孙力军, 等. 淀粉液化芽孢杆菌抗菌脂肽发酵培养基及发酵条件的优化. 中国农业科学, 2008, 41(2):533-539. Fang C J, Lu Z X, Sun L J, et al. Optimization of fermentation technology for lipopeptides producing bacteria Bacillus amyloliquefaciens ES-2-4. Scientia Agricultura Sinica, 2008, 41(2):533-539.
[10] Wei Y H, Chu I M. Mn2+ improves production of surfactin by Bacillus subtilis. Biotechnology Letters, 2002, 24(6):479-482.
[11] Li Y M, Haddad N I A, Yang S Z, et al. Variants of lipopeptides produced by Bacillus licheniformis HSN221 in different medium components evaluated by a rapid method ESI-MS. International Journal of Peptide Research and Therapeutics, 2008, 14(3):229-235.
[12] Cooper D G, Goldenberg B G. Surface-active agents from two Bacillus species. Applied and Environmental Microbiology, 1987, 53(2):224-229.
[13] Wei Y H, Wang L F, Chang J S. Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis. Biotechnology Progress, 2004, 20(3):979-983.
[14] Wei Y H, Chu I M. Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332. Enzyme and Microbial Technology, 1998, 22(8):724-728.
[15] Wei Y H, Wang L F, Chang J S, et al. Identification of induced acidification in iron-enriched cultures of Bacillus subtilis during biosurfactant fermentation. Journal of Bioscience and Bioengineering, 2003, 96(2):174-178.
[16] Grangemard I, Wallach J, Maget-Dana R, et al. Lichenysin- A more efficient cation chelator than surfactin. Applied Biochemistry and Biotechnology, 2001, 90(3):199-210.
[17] Thimon L, Peypoux F, Michel G. Interactions of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations. Biotechnology Letters, 1992, 14(8):713-718.
[18] Guerinot M L. Microbial iron transport. Annual Review of Microbiology, 1994, 48(1):743-772.
[19] Yeh M S, Wei Y H, Chang J S. Enhanced production of surfactin from Bacillus subtilis by addition of solid carriers. Biotechnology Progress, 2005, 21(4):1329-1334.
[20] 刘陆. 氘代氨基酸的制备及其在脂肽生物合成中的应用. 上海:华东理工大学硕士学位论文, 2011. Liu L. Preparation of deuterated amino acids and their application in the lipopeptide biosynthesis. Shanghai:A master’s degree thesis of Hua Dong University of Science, 2011.
[21] Banat I M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technology, 1995, 51(1):1-12.
[22] Barathi S, Vasudevan N. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil. Environment International, 2001, 26(5):413-416.
[23] Lang S, Wullbrandt D. Rhamnose lipids–biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 1999, 51(1):22-32.
[24] McCray J E, Bai G, Maier R M, et al. Biosurfactant-enhanced solubilization of NAPL mixtures. Journal of Contaminant Hydrology, 2001, 48(1):45-68.
[25] Cotton F A, Wilkinson G. Advanced Inorganic Chemistry.2nd ed. New York:John Wiley and Sons, 1966.847-862.
[26] Abdel-Mawgoud A M, Aboulwafa M M, Hassouna N A H. Optimization of surfactin production by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 2008, 150(3):305-325.

[1] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[2] 李法彬,刘露,杜燕,班睿. 构建重组枯草芽孢杆菌催化制备D-对羟基苯甘氨酸[J]. 中国生物工程杂志, 2019, 39(3): 75-86.
[3] 程功,焦思明,任立世,冯翠,杜昱光. 枯草芽孢杆菌壳聚糖酶水解制备低脱乙酰度壳寡糖及其组分分析 *[J]. 中国生物工程杂志, 2018, 38(9): 19-26.
[4] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[5] 王男,金吕华,张玲,林荣,杨海麟. 信号肽对亮氨酸脱氢酶在Bacillus subtilis中分泌表达的影响及酶学性质研究[J]. 中国生物工程杂志, 2018, 38(4): 46-53.
[6] 张玲,王男,金吕华,林荣,杨海麟. 双启动子促进亮氨酸脱氢酶在Bacillus subtilis中表达及发酵研究 *[J]. 中国生物工程杂志, 2018, 38(12): 21-31.
[7] 刘宇帅,张杰,钟瑾,李晶,孟利强,张淑梅. 解淀粉芽孢杆菌TF28抗菌脂肽芬芥素的分离鉴定及抑菌作用 *[J]. 中国生物工程杂志, 2018, 38(10): 20-29.
[8] 李生. 金属离子对细胞自噬的诱导作用[J]. 中国生物工程杂志, 2017, 37(7): 124-132.
[9] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[10] 胡桂元, 杨套伟, 饶志明, 刘梅, 徐美娟, 张显. 增强胞内NDAH水平和乙偶姻还原酶活力提高2,3-丁二醇产量[J]. 中国生物工程杂志, 2016, 36(6): 57-64.
[11] 曹莹莹, 邓盾, 张云, 孙爱君, 夏方亮, 胡云峰. 南海深海新颖低温脂肪酶的克隆、表达及酶学性质鉴定[J]. 中国生物工程杂志, 2016, 36(3): 43-52.
[12] 公颜慧, 马三梅, 张云, 王永飞, 胡云峰. 新颖微生物低温酯酶EstP8的酶学性质研究与在手性催化中的应用[J]. 中国生物工程杂志, 2016, 36(10): 35-44.
[13] 郝文博, 姬芳玲, 王静云, 张悦, 王天琪, 车文实, 包永明. D194G突变对meso-2,3-丁二醇脱氢酶催化特性的影响[J]. 中国生物工程杂志, 2016, 36(1): 47-54.
[14] 谢欢, 于慧敏, 沈忠耀. 芬芥素类脂肽生物表面活性剂的结构性能与合成强化[J]. 中国生物工程杂志, 2015, 35(7): 102-110.
[15] 黄翔峰, 王一涵, 刘佳楠, 刘佳, 陆丽君. 生物表面活性剂合成的促产因子研究进展[J]. 中国生物工程杂志, 2014, 34(7): 81-88.