Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (4): 85-91    
研究报告     
米根霉发酵产富马酸的最适替代中和剂及pH调控策略研究
陈晨, 邰超, 李霜
南京工业大学生物与制药工程学院 材料化学工程国家重点实验室 南京 210009
Search for Optimum Substitutive Neutralizing Agent and pH Control Strategy in Fumaric Acid Fermentation by Rhizopus oryzae
CHEN Chen, TAI Chao, LI Shuang
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
 全文: PDF(852 KB)   HTML
摘要: 针对米根霉发酵产富马酸使用的不同中和剂(CaCO3,Na2CO3,NH3·H2O,NaOH)进行了研究,结果表明发酵过程中使用Na2CO3作为中和剂时富马酸产率和生产强度最接近传统中和剂CaCO3。此后考察了不同pH值(3.5,4.5,5.5和6.5)对Na2CO3作为中和剂的富马酸发酵过程的影响。基于对3个动力学参数的分析,提出了一个旨在同时获得富马酸高产物浓度、高产率和高生产强度的双阶段pH调控策略,在初始的24 h内pH控制在5.5,然后将pH调到4.5直至发酵结束。最终富马酸的终浓度达到40.5 g/L,产率为0.55 g/g,生产强度为0.61 g/L/h,比恒定pH时的最优结果分别提高了8.3%,10.0%和17.3%,其中生产强度甚至比使用CaCO3时还高了3.4%。故以Na2CO3作为中和剂,采用双阶段pH调控策略具有降低能耗和简化下游步骤的优势,可以成功取代CaCO3
关键词: 富马酸米根霉中和剂动力学分析双阶段pH调控策略    
Abstract: Four different neutralizing agents (CaCO3, Na2CO3, NH32O, NaOH) were chosen to examine the effects of neutralizing agents on fumaric acid fermentation by Rhizopus oryzae ME-F12 which is the mutant of R. oryzae ATCC 20344. It was found that fumaric acid yield and productivity in the fermentation using Na2CO3 as neutralizing agent were the closest to which in the traditional CaCO3 case. Then the effects of different pH values (3.5, 4.5, 5.5, and 6.5) on fumaric acid fermentation using Na2CO3 as neutralizing agent were investigated. Based on the analysis of three kinetic parameters, a two-stage pH control strategy, aimed at achieving high concentration, high yield and high productivity of fumaric acid simultaneously, was proposed. pH was controlled at 5.5 at the first 24 h, and then switched to 4.5 till the end of the fermentation. Finally, the maximum concentration of fumaric acid reached 40.5 g/L with the yield of 0.55 g/g and the productivity of 0.61 g/L/h, which were 8.3%, 10.0% and 17.3% higher than the best result of constant pH control process. Its productivity was even 3.4% higher than which in CaCO3 case. With the internal advantages of reducing power consumption and simplifying downstream processing, using Na2CO3 as neutralizing agent under two-stage pH control strategy successfully take place of CaCO3.
Key words: Fumaric acid    Rhizopus oryzae    Neutralizing agents    Kinetic analysis    Two-stage pH control strategy
收稿日期: 2012-12-13 出版日期: 2013-04-25
ZTFLH:  Q819  
基金资助: 国家"863"计划(2011AA02A206);国家自然科学基金(21076104)资助项目
通讯作者: 李霜     E-mail: lishuang@njut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈晨
邰超
李霜

引用本文:

陈晨, 邰超, 李霜. 米根霉发酵产富马酸的最适替代中和剂及pH调控策略研究[J]. 中国生物工程杂志, 2013, 33(4): 85-91.

CHEN Chen, TAI Chao, LI Shuang. Search for Optimum Substitutive Neutralizing Agent and pH Control Strategy in Fumaric Acid Fermentation by Rhizopus oryzae. China Biotechnology, 2013, 33(4): 85-91.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I4/85

[1] Liao W, Liu Y, Frear C, et al. Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material-dairy manure-using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344. Bioresource Technology, 2008, 99(13):5859-5866.
[2] Tao W Y, Collier J R, Collier B J, et al. Fumaric acid as an adhesion promoter in rayon/nylon composite fibers. Textile Research Journal,1993, 63(3):162-170.
[3] Cao N, Du J, Chen C, et al. Production of fumaric acid by immobilized Rhizopus using rotary biofilm contactor Applied Biochemistry and Biotechnology, 1997, 63(1):387-394.
[4] Fu Y Q, Li S, Chen Y, et al. Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy. Applied Biochemistry and Biotechnology, 2010, 162(4):1031-1038.
[5] Cao N, Du J, Gong C, et al. Simultaneous production and recovery of fumaric acid from immobilized Rhizopus oryzae with a rotary biofilm contactor and an adsorption column. Applied and Environmental Microbiology, 1996, 62(8):2926-2931.
[6] Gangl I, Weigand W, Keller F A. Economic comparison of calcium fumarate and codium fumarate production by Rhizopus arrhizus. Applied Biochemistry and Biotechnology, 1990, 24(1):663-677.
[7] Xu Q, Li S, Fu Y Q, et al. Two-stage utilization of corn straw by Rhizopus oryzae for fumaric acid production. Bioresource Technology, 2010, 101(15):6262-6264.
[8] Rhodes R, Lagoda A, Misenheimer T, et al. Production of fumaric acid in 20-liter fermentors. Applied Microbiology, 1962, 10(1):9-15.
[9] Rhodes R, Moyer A, Smith M, et al. Production of fumaric acid by Rhizopus arrhizus. Applied Microbiology, 1959, 7(2):74-80.
[10] Zhou Y, Du J, Tsao G. Mycelial pellet formation by Rhizopus oryzae ATCC 20344. Applied Biochemistry and Biotechnology, 2000, 84(1-9):779-789.
[11] Du J, Cao N, Gong C, et al. Fumaric acid production in airlift loop reactor with porous sparger. Applied Biochemistry and Biotechnology, 1997, 63(1):541-556.
[12] Fu Y Q, Xu Q, Li S, et al. A novel multi-stage preculture strategy of Rhizopus oryzae ME-F12 for fumaric acid production in a stirred-tank reactor. World Journal of Microbiology and Biotechnology, 2009, 25(10):1871-1876.
[13] Zhou Y, Du J, Tsao G T. Comparison of fumaric acid production by Rhizopus oryzae using different neutralizing agents. Bioprocess and Biosystems Engineering, 2002, (25):179-181.
[14] Riscaldati E, Moresi M, Federici F, et al. Direct ammonium fumarate production by Rhizopus arrhizus under phosphorous limitation. Biotechnology Letters, 2000, 22(13):1043-1047.
[15] Luedeking R, Piret E. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. Biotechnology and Bioengineering, 2000, 67(6):636-644.
[16] Presser K, Ratkowsky D, Ross T. Modelling the growth rate of Escherichia coli as a function of pH and lactic acid concentration. Applied and Environmental Microbiology, 1997, 63(6):2355.
[17] Jernejc K, Legisa M. A drop of intracellular pH stimulates citric acid accumulation by some strains of Aspergillus niger. Journal of Biotechnology, 2004,112(3):289-297.
[18] Ji X J, Huang H, Du J, et al. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresource Technology, 2009, 100(13):3410-3414.
[19] Engel C A R, Straathof A J J, Zijlmans T W, et al. Fumaric acid production by fermentation. Applied Microbiology and Biotechnology, 2008, 78(3):379-389.
[1] 刘强, 徐晴, 李霜. 膜反应器固定化米根霉发酵产富马酸的工艺研究[J]. 中国生物工程杂志, 2014, 34(2): 93-97.
[2] 黄卓烈, 苏婷, 巫光宏, 梁欣欣, 何平, 詹福建, 丘泰球. 甲醇对酵母过氧化氢酶活性的影响机理研究[J]. 中国生物工程杂志, 2003, 23(12): 103-106.