Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (4): 101-105    
技术与方法     
新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究
陈宽婷1, 姚俊1, 阮文辉2, 魏钦俊1, 鲁雅洁1, 曹新1
1. 南京医科大学 基础医学院 南京 210029;
2. 山西省医药与生命科学研究院 太原 030001
Preparation of a Novel Self-assembly Nanoparticle Based on Amphiphilic γ-Polyglutamic Acid Derivatives as a Protein Carrier
CHEN Kuan-ting1, YAO Jun1, RUAN Wen-hui2, WEI Qin-jun1, LU Ya-jie1, CAO Xin1
1. Department of Biotechnology, School of Basic Medical Science, Nanjing Medical University, Nanjing 210029, China;
2. Shanxi Institute of Medicine and Life Science, Taiyuan 030001, China
 全文: PDF(590 KB)   HTML
摘要: 对水溶性的γ-聚谷氨酸(γ-PGA)进行了接枝改性,合成了两亲性γ-聚谷氨酸(γ-PGA)接枝衍生物,采用超声探头法制备胆甾醇基γ-PGA自组装胶束,并以卵清蛋白(OVA)作为模型蛋白,研究其载药和释药性能。结果表明,制备的两亲性胆甾醇基γ-PGA自组装胶束平均粒径为299.6+27.3nm,粒径的多分散系数较窄(0.17),且具有较低的细胞毒性;其疏水核-亲水壳的纳米微结构对蛋白药物显示了良好载药性能,对OVA载药量可达118.8μg/mg,包封率33.5%;体外释药结果显示,负载OVA的甾醇基γ-PGA自组装胶束能延缓蛋白的释放,释药速率与介质pH密切相关。
关键词: γ-聚谷氨酸接枝共聚物自组装纳米胶束药物载体    
Abstract: A novel amphiphilic graft copolymer composed of γ-polyglutamic acid (γ-PGA) as the hydrophilic backbone and cholesterol as the hydrophobic segment was synthesized. The cholesterol-bearing γ-PGA (γ-PGA-Graft-CH) was used to form self-assembly nanoparticles (γ-PGA-Graft-CH NPs) with an inner hydrophobic core and an outer hydrophilic shell via the ultrasonic probe method. The obtained nanoparticles showed low cytotoxicity and a narrow size distribution (PDI=0.17) with a mean diameter 299.6+5.4 nm. OVA-loading γ-PGA-Graft-CH NPs was also successfully prepared, with drug loading content of 118.8μg/mg, and entrapment efficiency of 33.5%. The experimental results also showed that OVA continuously released from γ-PGA-Graft-CH NPs in the phosphate buffered saline (PBS) solutions,and its release was sensitive to the pH of the release medium.
Key words: γ-Polyglutamic acid    Graft copolymer    Self-assembly nanoparticles    Drug carrier
收稿日期: 2012-10-18 出版日期: 2013-04-25
ZTFLH:  Q819  
基金资助: 山西省科技攻关项目(20110321081-01,20120313016-6);江苏高校优势学科建设工程资助项目
通讯作者: 曹新     E-mail: biotechnol@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈宽婷
姚俊
阮文辉
魏钦俊
鲁雅洁
曹新

引用本文:

陈宽婷, 姚俊, 阮文辉, 魏钦俊, 鲁雅洁, 曹新. 新型γ-聚谷氨酸自组装纳米胶束的制备及用于蛋白载体的研究[J]. 中国生物工程杂志, 2013, 33(4): 101-105.

CHEN Kuan-ting, YAO Jun, RUAN Wen-hui, WEI Qin-jun, LU Ya-jie, CAO Xin. Preparation of a Novel Self-assembly Nanoparticle Based on Amphiphilic γ-Polyglutamic Acid Derivatives as a Protein Carrier. China Biotechnology, 2013, 33(4): 101-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I4/101

[1] Gupta R B, Kompella U B. 纳米粒给药系统. 北京: 科学出版社, 2010.3-10. Gupta R B, Kompella U B. Nanoparticle Technology for Drug Delivery. Beijing:Science Press, 2010.3-10.
[2] Thassu D, Deleers M, Pathak Y. 纳米粒药物输送系统. 北京: 北京大学医学出版社, 2010. 1-34. Thassu D, Deleers M, Pathak Y. Nanoparticulate Drug Delivery System. Beijing:Science Press, 2010.1-34.
[3] Torchilin V P. Structure and design of polymeric surfactantbased drug delivery systems. J Control Release, 2001, 73: 137-172.
[4] Fua G D, Li G L, Neoh K G, et al. Hollow polymeric nanostructures—Synthesis, morphology and function. Prog Polymer Sci, 2011, 36: 127-167.
[5] Kedar U, Pharma M, Phutane P, et al. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine: Nanotechnology, Biology, and Medicine 2010, 6: 714-729.
[6] Rao J P, Kurt E G. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci, 2011, 36: 887-913.
[7] Nair L S, Sterns T, Ko J, et al. Biodegradable polymers as biomaterials. Prog Polym Sci, 2007, 32: 762-798.
[8] Ishizu K, Tsubaki K, Mori A. Architecture of nanostructured polymers. Prog Polym Sci, 2003, 28: 27-54.
[9] Hans M L, Lowman A M. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci, 2002, 6: 319-327.
[10] Xun W, Wang H Y, Li Z Y, et al. Self-assembled micelles of novel graft amphiphilic copolymers for drug controlled release. Colloids and Surfaces B: Biointerfaces, 2011, 85(1): 86-91.
[11] Ravi K, Muzzarelli R, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chem Rev, 2004, 104: 6017-6084.
[12] 蒋刚彪, 张余, 刘慧. 壳聚糖作为药物载体的应用概况. 中国药房, 2007, 8(3): 1022-1023. Jiang G B, Zhang Y, Liu H. Review on applications of chitosan as drug carriers. China Pharmacy, 2007, 8(3): 1022-1023.
[13] 徐虹, 欧阳平凯. 生物高分子[M]. 北京: 化学工业出版社, 2010.18-96. Xu H, Ouyang P K. Biopolymers, Beijing: Beijing Chemical Industry Press, 2010.18-96.
[14] Ashiuchi M, Misono H. In: S.R. Fahnestock, Steinbuchel A, Eds. Biopolymers. Weinheim:WileyVCH, 2002.123.
[15] 姚俊, 陈宽婷, 魏钦俊等. 一株γ-聚谷氨酸合成菌的筛选与鉴定. 微生物学通报, 2011, 38(2): 164-168. Yao J, Chen K T, Wei Q J, et al. Screening and identification of a novel γ-polyglutamic acid producing strain. Microbiology, 2011, 38(2): 164-168.
[16] 王银松, 王玉玫, 李荣珊, 赵晶, 张其清. 新型壳聚糖基自组装纳米胶束紫杉醇药物释放载体. 高等学校化学学报, 2008, 29(6): 1065-1069. Wang Y S, Wang Y M, Li R S, et al. Chitosan-based self-assembled nanomicelles as a novel carrier for paclitaxel. Chem J Chinese Universities, 2008, 29(6): 1065-1069.
[17] Wang Y S, Liu L R, Weng J, et al. Preparation and characterization of self-aggregated nanoparticles of cholesterol-modified O-carboxylmethyl chitosan conjugates. Carbohydr Polym, 2007, 69: 597-606.
[1] 孙莉萍,徐宛,李孟伟,曾茹,翁建. 孢粉素的物理化学性质和生物医学应用研究进展*[J]. 中国生物工程杂志, 2021, 41(9): 92-100.
[2] 李佳欣,张正,刘赫,杨青,吕成志,杨君. 角蛋白载药纳米颗粒的制备及药物可控释放性能研究*[J]. 中国生物工程杂志, 2021, 41(8): 8-16.
[3] 朱亚鑫, 段艳婷, 高宇豪, 王籍阅, 张晓梅, 张晓娟, 徐国强, 史劲松, 许正宏. 不同D/L单体比γ-聚谷氨酸的合成与调控[J]. 中国生物工程杂志, 2021, 41(1): 1-11.
[4] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[5] 潘晓倩,熊向源,龚妍春,李资玲,李玉萍. 口服抗癌药物纳米载体的研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 65-73.
[6] 张文, 张树清, 马晓彤, 何翠翠. 纳豆芽孢杆菌(Bacillus natto)发酵生产γ-聚谷氨酸过程中培养基组分的优化[J]. 中国生物工程杂志, 2013, 33(11): 44-50.
[7] 黄凯宗 王文研 张光亚. 类弹性蛋白多肽及其在生物医学材料的应用[J]. 中国生物工程杂志, 2010, 30(05): 128-132.