Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (12): 69-78    
技术与方法     
在叶绿体中过量表达AOD1和HPS-PHI创建光合甲醇同化途径增加烟草同化甲醇能力
刘蕾, 孙振, 宋中邦, 肖素勤, 陈丽梅
昆明理工大学生命科学与技术学院生物工程技术研究中心 昆明 650500
Simultaneous Over-expressions of AOD1 and HPS-PSI in Chloroplasts Creates a Novel Photosynthetic CH3OH-assimilation Pathway and Enhances Its Ability to Assimilate CH3OH
LIU Lei, SUN Zhen, SONG Zhong-bang, XIAO Su-qin, CHEN Li-mei
Faculty of Live Science and Engineering, Chenggong Campus, Kunming University of Science and Technology, Kunming 650500, China
 全文: PDF(1133 KB)   HTML
摘要: 最近的研究证明在叶绿体内过量表达甲基营养细菌RuMP中固定HCHO的关键酶6-磷酸己酮糖合成酶(HPS)和6-磷酸果糖异构酶(PHI)的融合蛋白HPS-PHI可以在转基因天竺葵中构建一条甲醛光合同化途径从而提高植物对甲醛的同化和脱毒能力。甲醇氧化酶(AOD1)是甲基营养型酵母甲醇代谢途径的第一个关键酶,可催化甲醇氧化为甲醛。在烟草叶绿体中过量表达AOD1或/和HPS-PHI产生过量表达AOD1(AO)、HPS-PHI(AB)、同时过量表达AOD1和HPS-PHI(AA)的转基因烟草。用2和6mmol/L 13CH3OH处理3种转基因烟草和野生型烟草(WT),13C-NMR分析表明AO植株中积累的H13COOH最多,[U-13C] Gluc和[U-13C] Fruc的生成量在AO和WT间无显著差异,在AA和AB中的产生量显著高于AO和WT,且在AA中的生成量又高于AB,这种差异在6mmol/L 13CH3OH处理植株中比2 mmol/L更为明显。这些结果证实在叶绿体中过表达AOD1增加烟草氧化甲醇为甲酸的能力,同时过量表达AOD1和HPS-PHI在烟草中成功地构建一个甲醇光合同化途径,提高烟草同化甲醇为糖类物质的能力。
关键词: HPS-PHI融合蛋白甲醇同化作用转基因烟草甲醇光合同化途径甲醇氧化酶    
Abstract: 3-hexulose-6-phosphate synthase (HPS) and 6-phosphate-3-hexuloisomerase (PHI) are two key enzymes in a HCHO-assimilation pathway in methylotroph. It has demonstrated that overexpression of HPS/PHI fusion protein in chloroplasts of geranium installs a photosynthetic HCHO-assimilation pathway and thereby enhanced the ability of transgenic plants to assimilate and detoxify formaldehyde. Alcohol oxidase (AOD1) is the first key enzyme in the methanol metabolic pathway in methylotrophic yeasts. AOD catalyzes oxidation of methanol to formaldehyde. AOD1 or/and HPS-PHI were over-expressed in chloroplasts of tobacco to generate AOD1 (AO), HPS-PHI (AB) over-expression line as well as AOD1 and HPS-PHI (AA) simultaneous over-expression line. The transgenic and wild-type tobacco (WT) was treated with 2 mmol/L and 6 mmol/L 13CH3OH. 13C-NMR analysis showed that the accumulation of H13COOH was maximum in AO trangenic plants. There is no significant difference in the generation of [U-13C] glucose (Gluc) and [U-13C] fructose (Fruc) between AO and WT lines. However, the production of [U-13C] glucose (Gluc) and [U-13C] fructose (Fruc) in AA and AB lines was significantly higher than that in AO and WT lines. Moreover, the formation of the two metabolites in AA line was higher than in AB line. These differences were more significant in 6mmol/L 13CH3OH treated-plants than in 2 mmol/L 13CH3OH-treated plants. These results suggested that overexpression of AOD1 in chloroplasts enhanced the ability of tobacco to oxidize methanol to formaldehyde, while simultaneous overexpression of AOD1 and HPS-PHI could successfully created a photosynthetic CH3OH-assimilation pathway, thus enhanced ability of tobacco to assimilate CH3OH as sugars.
Key words: Transgenic tobacco    Photosynthetic HCHO-assimilation pathway    Alcohol oxidase    HPS-PHI fusion protein    CH3OH-assimilation pathway
收稿日期: 2013-10-12 出版日期: 2013-12-25
ZTFLH:  Q812  
基金资助: 国家自然科学基金资助项目(30970263)
通讯作者: 陈丽梅,E-mail:chenlimeikm@yahoo.com.cn     E-mail: chenlimeikm@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘蕾
孙振
宋中邦
肖素勤
陈丽梅

引用本文:

刘蕾, 孙振, 宋中邦, 肖素勤, 陈丽梅. 在叶绿体中过量表达AOD1和HPS-PHI创建光合甲醇同化途径增加烟草同化甲醇能力[J]. 中国生物工程杂志, 2013, 33(12): 69-78.

LIU Lei, SUN Zhen, SONG Zhong-bang, XIAO Su-qin, CHEN Li-mei. Simultaneous Over-expressions of AOD1 and HPS-PSI in Chloroplasts Creates a Novel Photosynthetic CH3OH-assimilation Pathway and Enhances Its Ability to Assimilate CH3OH. China Biotechnology, 2013, 33(12): 69-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I12/69

[1] Chen L M, Yurimoto H, Li K Z, et al. Assimilation of formaldehyde in transgenic plants due to the introduction of the bacterial ribulose monophosphate pathway genes. Biosci Biotech Bioch, 2010, 74: 627-635.
[2] Song Z B, Orita I, Yin F, et al. Overexpression of an HPS/PHI fusion enzyme from Mycobacterium gastri in chloroplasts of geranium enhances its ability to assimilate and phytoremediate formaldehyde. Biotechnol Lett, 2010, 32: 1541-1548.
[3] Su-Qin XIAO, Zhen Sun, Sha-Sha Wang, et al. Overexpressions of dihydroxyacetone synthase and dihydroxyacetone kinase in chloroplasts install a novel photosynthetic HCHO-assimilation pathway in transgenic tobacco using modified gateway entry vectors. Acta Physiol Plant, 2012, 34:1975-1985.
[4] Cossins E A. The utilization of carbon-1 compounds by plants:Ⅱ. The metabolism of methanol-C14 and its role in amino acid biosynthesis. Can J Biochem, 1964, 42: 1793-1802.
[5] Gout E, Aubert S, Bligny R, et al. Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol, 2000, 12: 287-296.
[6] Sugita M, Manzara T, Pichersky E, et al. Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1, 5-bisphosphate carboxylase/oxygenase from tomato. Mol Gen Genet, 1987, 209:247-256.
[7] Ma L, Song Z B, Hu Q Q, et al. Construction and application of a gateway entry vector with Rubisco small subunit promoter and its transit peptide sequence. Prog Biochem Biophys, 2011, 38: 269-279.
[8] Karimi M, Inze D, Depicker A. Gateway vectors for Agrobacterium -mediated plant transformation. Trends Plant Sci, 2002, 7:193-195.
[9] Horsch R, Fry J, Hoffmann N, et al. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229-1231.
[10] KrishnaRaj S, Bi Y M, Saxena P K. Somatic embryogenesis and Agrobacterium-mediated transformation system for scented geraniums (Pelargonium sp‘Frensham’). Planta, 1997, 201:434-440.
[11] Murray H G, Thompson W F. Rapid isolation of high molecular weight DNA. Nucleic Acids Research, 1980, 8:4321-4325.
[12] Miyagawa Y, Tamoi M, Shigeoka S. Overexpression of a cyanobacterial fructose-1, 6-/sedoheptulose-1, 7-bisphosphatase in tobacco enhances photosynthesis and growth. Nat Biotechnol, 2001, 19: 965-969.
[13] Orita I, Sakamoto N, Kato N, et al. Bifunctional enzyme fusion of 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. Appl Microbiol Biotechnol, 2007, 76:439-445.
[14] Yanase H, Matsuzaki K, Sato Y, et al. Enzymatic preparation of[1-13C] D-fructose-6-phosphate from[13C] formaldehyde and D-ribose-5-phosphate using the formaldehyde-fixing system of Methylomonas aminofaciens 77a. Appl Microbiol Biotechnol, 1992, 37:301-304.
[15] Yasueda H, Kawahara Y, Sugimoto S. Bacillus subtilis yckG and yckF encode two key enzymes of the ribulose monophosphate pathway used by methylotrophs, and yckH is required for their expression. J Bacteriol, 1999, 181:7154-7160.
[16] Yurimoto H, Kato N, Sakai Y. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism. Chemical Record, 2005, 5:367-375.
[17] Foyer C H, Halliwell B. Purification and properties of dehydroascorbate reductase from apinach leaves. Phytochemistry, 1977, 16:1347-1350.
[18] Shigeoka S, Ishikawa T, Tamoi M Y, et al. Regulation and function of ascorbate peroxidase isoenzymes. J Experimental Botany, 2002, 53:1305-1319.
[19] Cregg J M, Madden K R, Barringer K J, et al. Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol, 1989, 9:1316-1323.
[20] Lelieveld J, Crutzem P J, Bruhl C. Climate effects of atmospheric methane. Chemosphere, 1993, 26:739-768.
[21] Keppler F, Hamilton J T, Brab M. Methane emissions from terrestrial plants under aerobic conditions. Nature, 2006, 439:187-191.
[22] Ramirez I, Dorta F, Espinoza V, et al. Effects of foliar and root applications of methanol on the growth of arabidopsis, tobacco, and tomato plants. J Plant Growth Regul, 2006, 25:30-44.
[23] Theodoridou A, Dornemann D, Kotzabasis K. Light-dependent induction of strongly increased microalgal growth by methanol. Biochim Biophys Acta, 2002, 1573:189-198.
[1] 姚民,朱淑华,李佛生,张士彦,唐琳. 异源表达AtCYSa基因烟草的耐盐和抗虫特性分析[J]. 中国生物工程杂志, 2018, 38(4): 8-16.
[2] 韩双, 杨志丽, 陈丽梅. 过量表达拟南芥CAT提高烟草对气体甲醛的吸收和抗性[J]. 中国生物工程杂志, 2015, 35(5): 41-48.
[3] 宋锋 孙敏 罗克明. 一种基于PCR技术鉴定单拷贝转基因烟草的方法[J]. 中国生物工程杂志, 2010, 30(04): 83-88.
[4] 芦丽亚 宋维 游晓慧 江婷 赵凌侠. 用无选择标记的转基因烟草表达胸腺素α1(Tα1)[J]. 中国生物工程杂志, 2010, 30(03): 1-8.
[5] 庄军,刘志昕. 香蕉束顶病毒DNA组分2、3的启动子区的组织特异性分析[J]. 中国生物工程杂志, 2007, 27(9): 69-73.
[6] 肖海波,王岚,严琛,徐莺,陈放,唐琳. 转基因烟草表达西红花CSzCD基因产生西红花酸[J]. 中国生物工程杂志, 2007, 27(6): 51-55.
[7] 黄明星,魏琴,徐莺,陈放. 麻疯树逆境蛋白(curcin 2)基因在烟草中的表达[J]. 中国生物工程杂志, 2007, 27(4): 94-98.
[8] 郭兆奎, 杨谦, 姚泉洪, 万秀清, 颜培强. 转拟南芥AtKup1基因高含钾量烟草获得[J]. 中国生物工程杂志, 2005, 25(12): 24-28.
[9] 李霞, 陈杭, 李晓东, 钟辉, 曹诚, 马清钧. 疟疾多抗原表位基因表达载体的构建及其在烟草中的表达[J]. 中国生物工程杂志, 1999, 19(4): 39-44,38.
[10] 周兆斓, 朱祯. 植物抗虫基因工程研究进展[J]. 中国生物工程杂志, 1994, 14(4): 18-24.
[11] 朱祯. 植物基因转译产物的定位与加工(续)[J]. 中国生物工程杂志, 1994, 14(3): 24-30.
[12] 刘进元, 余荔华. 植物抗病基因工程的研究进展[J]. 中国生物工程杂志, 1994, 14(2): 31-34.