Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (12): 35-44    
研究报告     
植物乳杆菌的比较基因组学研究
陈臣, 任婧, 周方方, 刘振民, 郭本恒
光明乳业股份有限公司研究院 乳业生物技术国家重点实验室 上海 200436
Comparative Genomic Analysis of Lactobacillus plantarum
CHEN Chen, REN Jing, ZHOU Fang-fang, LIU Zhen-min, GUO Ben-heng
State Key Laboratory of Dairy Biotechnology, Institute of Bright Dairy & Food Co., Ltd., Shanghai 200436, China
 全文: PDF(1939 KB)   HTML
摘要: 植物乳杆菌是一类与人类的生活关系密切,具有多种益生功能的乳酸菌。随着高通量测序技术的广泛应用,越来越多的植物乳杆菌基因组全序列测定得以实现。以植物乳杆菌ST-Ⅲ基因组为主要研究对象,采用比较基因组学分析和比较了几株测序的植物乳杆菌的基因组特点,重点分析了与植物乳杆菌素、蛋白水解系统,糖代谢和胞外多糖合成相关基因,为植物乳杆菌研究和应用提供参考。
关键词: 植物乳杆菌基因组比较基因组学    
Abstract: As an important species of Lactic acid bacteria, Lactobacillus plantarum is closely related to the human life with various probiotic properties. With the advances of DNA-sequencing, genome determination for many strains of L. plantarum becomes available. Comparative analysis of several genomes of L. plantarum was performed based on the genome of L. plantarum ST-Ⅲ. The genes for plantaricin biosynthesis, sugar metabolism, proteolytic system and extracellular polysaccharide biosynthesis were analyzed specifically, providing advices for the research and application of this important species.
Key words: Comparative genomics    Lactobacillus plantarum    Genome
收稿日期: 2013-10-08 出版日期: 2013-12-25
ZTFLH:  Q93  
基金资助: 科技部;“十二五”国家科技支撑计划(2013BAD18B01);科技部;“十二五”国家“863”计划(2011AA100901)资助项目
通讯作者: 郭本恒,E-mail:gbhbrightdairy@hotmail.com     E-mail: gbhbrightdairy@hotmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈臣
任婧
周方方
刘振民
郭本恒

引用本文:

陈臣, 任婧, 周方方, 刘振民, 郭本恒. 植物乳杆菌的比较基因组学研究[J]. 中国生物工程杂志, 2013, 33(12): 35-44.

CHEN Chen, REN Jing, ZHOU Fang-fang, LIU Zhen-min, GUO Ben-heng. Comparative Genomic Analysis of Lactobacillus plantarum. China Biotechnology, 2013, 33(12): 35-44.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I12/35

[1] Siezen R J, van Hylckama Vlieg J E. Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microb Cell Fact, 2011, 10(Suppl 1):S3.
[2] Bolotin A, Wincker P, Mauger S, et al. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res, 2001, 11(5): 731-753.
[3] Liu Z, Guo B, Wang Y, et al. Cholesterol removal from media by Lactobacillus plantarum ST-Ⅲ. Milchwissenschaft, 2008, 63(2): 134-137.
[4] Ren J, Sun K, Wu Z, et al. All 4 bile salt hydrolase proteins are responsible for the hydrolysis activity in Lactobacillus plantarum ST-Ⅲ. J Food Sci, 2011, 76(9): 622-628.
[5] Chen C, Ai L, Zhou F, et al. Complete nucleotide sequence of plasmid pST-Ⅲ from Lactobacillus plantarum ST-Ⅲ. Plasmid, 2012, 67(3): 236-244.
[6] Wang Y, Chen C, Ai L, et al. Complete genome sequence of the probiotic Lactobacillus plantarum ST-Ⅲ. J Bacteriol, 2011, 193(1): 313-314.
[7] Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004, 32(Database issue): 277-280.
[8] Delcher A L, Kasif S, Fleischmann R D, et al. Alignment of whole genomes. Nucleic Acids Res, 1999, 27(11): 2369-2376.
[9] Kleerebezem M, Boekhorst J, van Kranenburg R, et al. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A, 2003, 100(4): 1990-1995.
[10] Zhang Z Y, Liu C, Zhu Y Z, et al. Complete genome sequence of Lactobacillus plantarum JDM1. J Bacteriol, 2009, 191(15): 5020-5021.
[11] Axelsson L, Rud I, Naterstad K, et al. Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730). J Bacteriol, 2012, 194(9): 2391-2392.
[12] Molenaar D, Bringel F, Schuren F H, et al. Exploring Lactobacillus plantarum genome diversity by using microarrays. J Bacteriol, 2005, 187(17): 6119-6127.
[13] Gonzalez B, Arca P, Mayo B, et al. Detection, purification, and partial characterization of plantaricin C, a bacteriocin produced by a Lactobacillus plantarum strain of dairy origin. Appl Environ Microbiol, 1994, 60(6): 2158-2163.
[14] Nissen-Meyer J, Larsen A G, Sletten K, et al. Purification and characterization of plantaricin A, a Lactobacillus plantarum bacteriocin whose activity depends on the action of two peptides. J Gen Microbiol, 1993, 139(9): 1973-1978.
[15] Anderssen E L, Diep D B, Nes I F, et al. Antagonistic activity of Lactobacillus plantarum C11: two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Appl Environ Microbiol, 1998, 64(6): 2269-2272.
[16] Jimenez-Diaz R, Ruiz-Barba J L, Cathcart D P, et al. Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Appl Environ Microbiol, 1995, 61(12): 4459-4463.
[17] Suma K, Misra M C, Varadaraj M C. Plantaricin LP84, a broad spectrum heat-stable bacteriocin of Lactobacillus plantarum NCIM 2084 produced in a simple glucose broth medium. Int J Food Microbiol, 1998, 40(1-2): 17-25.
[18] Diep D B, Havarstein L S, Nes I F. A bacteriocin-like peptide induces bacteriocin synthesis in Lactobacillus plantarum C11. Mol Microbiol, 1995, 18(4): 631-639.
[19] Diep D B, Havarstein L S, Nes I F. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. J Bacteriol, 1996, 178(15): 4472-4483.
[20] 季红, 吴正钧, 韩瑨, 等. 植物乳杆菌ST-Ⅲ细菌素类抑菌活性的研究. 食品研究与开发, 2013, 34(07): 6-12. Ji H, Wu Z J, Han J, et al.Study on bacteriocin production of Lactobacillus plantarum ST-Ⅲ. Food Res Dev, 2013, 34(07): 6-12.
[21] Sturme M H, Francke C, Siezen R J, et al. Making sense of quorum sensing in lactobacilli: a special focus on Lactobacillus plantarum WCFS1. Microbiology, 2007, 153(Pt 12): 3939-3947.
[22] Pridmore R D, Berger B, Desiere F, et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A, 2004, 101(8): 2512-2517.
[23] Savijoki K, Ingmer H, Varmanen P. Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol, 2006, 71(4): 394-406.
[24] Lengeler J W, Jahreis K. Bacterial PEP-dependent carbohydrate: phosphotransferase systems couple sensing and global control mechanisms. Contrib Microbiol, 2009, 16:65-87.
[25] Ganzle M G, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol, 2012, 3:1-15.
[26] 赵玉娟, 李盛钰, 牛春华, 等. 鼠李糖乳杆菌JAAS8胞外多糖聚合和转运相关基因的克隆及生物信息学分析. 基因组学与应用生物学, 2010, 29(03): 447-452. Zhao Y J, Li S Y, Niu C H, et al. Cloning and bioinformatics analysis of the exopolysaccharide biosynthetic polymerization and transportation genes from Lactobacillus rhamnosus JAAS8. Genomics Appl Biol, 2010, 29(03): 447-452.
[27] De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol Rev, 1999, 23(2): 153-177.
[28] Remus D M, Kranenburg R, Swam I I, et al. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microb Cell Fact, 2012, 11(1): 149.
[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 王晓洁,孟凡强,周立邦,吕凤霞,别小妹,赵海珍,陆兆新. 利用基因组改组技术提高短杆菌素产量及其培养条件优化*[J]. 中国生物工程杂志, 2021, 41(8): 42-51.
[3] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[4] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[5] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[6] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[7] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[8] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[9] 陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.
[10] 姜吉喆, 潘航, 乐敏, 章乐. 基于比较基因组学方法的世界范围的犬布鲁氏菌系统发育群研究 *[J]. 中国生物工程杂志, 2020, 40(3): 38-47.
[11] 程子昭,陈楚楚,应磊,李校堃,黄志锋. 冠状病毒基因组特征及感染特点比较*[J]. 中国生物工程杂志, 2020, 40(11): 56-66.
[12] 陈军,郑华军,刘亚铭,赵国屏,秦松. 雨生红球藻低覆盖度基因组草图分析 *[J]. 中国生物工程杂志, 2018, 38(7): 21-28.
[13] 唐存多,史红玲,马越,丁朋举,许建和,阚云超,姚伦广. 新型R-扁桃酸脱氢酶的基因挖掘及表达鉴定 *[J]. 中国生物工程杂志, 2018, 38(2): 30-37.
[14] 付理文, 张宇, 依含, 李雪, 朱乃硕. Taqman多重实时荧光PCR同步定量检测6种动物源性成分方法的建立[J]. 中国生物工程杂志, 2017, 37(9): 48-59.
[15] 宋佳雯, 田苏, 张玉如, 王志珍, 常忠义, 高红亮, 步国建, 金明飞. 基因组重排筛选高产谷氨酰胺转胺酶菌株[J]. 中国生物工程杂志, 2017, 37(9): 105-111.