Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (12): 114-120    
综述     
生物质能源发酵中染菌及防控的研究进展
刘华擎, 李灏
北京化工大学生命科学与技术学院 北京 100029
Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation
LIU Hua-qing, LI Hao
College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
 全文: PDF(453 KB)   HTML
摘要: 生物质能源具有环境友好、成本低廉、可再生可持续等众多优势。然而,生物质能源发酵生产依然面临非粮原料利用技术不成熟以及高渗、高温、产物胁迫、杂菌污染等诸多问题。其中杂菌污染是生物质能源发酵工业中长期以来不能彻底解决的问题。杂菌通常通过影响发酵环境、竞争底物及生存环境等方面抑制发酵,若不能得到有效控制,会严重影响产量,进而导致巨大的经济损失。传统的杂菌防控主要通过添加抗生素来实现,而其抗药性等问题日益突出,因而近年来涌现出的一些新的杂菌防控方法受到越来越多的关注。介绍了近年来关于生物乙醇及其它生物质能源发酵中杂菌污染产生的原因、杂菌污染抑制生物质能源发酵机制的研究进展,并对如何防控杂菌污染的研究进展进行了综述。
关键词: 生物质能源发酵杂菌污染防控    
Abstract: Biomass energy has many advantages, and it is considered to be environmentally-friendly, low cost, renewable and sustainable. However, fermentation of biomass energy is still facing some issues, such as immature technology of non-food raw materials, hypertonic cells, high temperature, product stress, as well as bacterial contamination. Bacterial contamination is a long-standing problem that cannot be completely solved in the biomass fermentation industry. Bacteria usually inhibit fermentation by affecting the fermenting environment and competing substrate and survival environment, etc. If it cannot be effectively controlled, it will seriously affect the production, which may lead to huge economic losses. Traditional way to prevention and control bacterial contamination is adding antibiotics. But the resistance problems have become increasingly prominent, so some new bacteria-prevention methods are paid more and more attention. The recent progress on the causes of bacterial contamination in bio-ethanol and other biomass fermentation, the mechanism of bacterial contamination inhibiting biomass energy fermentation, and the research progress on how to prevent and control bacterial contamination were discussed.
Key words: Biomass energy    Fermentation    Bacterial contamination    Prevention and controlling
收稿日期: 2013-10-12 出版日期: 2013-12-25
ZTFLH:  Q819  
基金资助: 国家自然科学基金资助项目(31201413)
通讯作者: 李灏,E-mail:lihao@mail.buct.edu.cn,E-mail:lihaoh@163.com     E-mail: lihaoh@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘华擎
李灏

引用本文:

刘华擎, 李灏. 生物质能源发酵中染菌及防控的研究进展[J]. 中国生物工程杂志, 2013, 33(12): 114-120.

LIU Hua-qing, LI Hao. Research Progress on Prevention and Controlling of Bacterial Contamination in Biomass Fermentation. China Biotechnology, 2013, 33(12): 114-120.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I12/114

[1] Giampietro M, Martin J R, Ulgiati S. Can we break the addiction to fossil energy? Energy the International Journal, 2012, 37 (1): 2-4.
[2] 高春燕, 刘慧, 叶乃好, 等.大型海藻发酵生产甲烷技术研究. 中外能源, 2011, 16 (4): 27-35. Gao C Y, Liu H, Ye N H, et al. A study on technologies for producing methane on a large scale by fermentation of algae. Sino-global Energy, 2011, 16 (4): 27-35.
[3] 石元春. 生物质能源主导论——为编制国家 "十二五" 规划建言献策. 能源与节能, 2011, (1): 1-7. Shi Y C. Discuss of taking bioenergy as the dominant energy—advice and suggestions for the preparation of the national "Twelfth Five-Year" plan. Energy and Energy Conservation, 2011, (1): 1-7.
[4] 张燕, 佟达, 宋魁彦. 生物质能的热化学转化技术. 森林工程, 2012, 28 (2): 11-13. Zhang Y, Tong D, Song K Y. Study on biomass thermo-chemical conversion techniques. Forest Engineering, 2012, 28 (2): 11-13.
[5] Ramachandran R P, van Rossum G, van Swaaij W P, et al. Evaporation of biomass fast pyrolysis oil: Evaluation of char formation. Environmental Progress and Sustainable Energy, 2009, 28 (3): 410-417.
[6] Westerhof R J, Brilman D W, van Swaaij W P, et al. Effect of temperature in fluidized bed fast pyrolysis of biomass: Oil quality assessment in test units. Industrial and Engineering Chemistry Research, 2009, 49 (3): 1160-1168.
[7] Bridgeman T G, Jones J M, Shield I, et al. Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel, 2008, 87 (6): 844-856.
[8] Wyman C E. What is (and is not) vital to advancing cellulosic ethanol. Trends in Biotechnology, 2007, 25 (4): 153-157.
[9] 赵硕, 李平. 耐高渗 (高糖) 酵母菌株的选育. 安徽: 安徽农业大学, 2010, doi: 10.7666/d.y1735038. Zhao S, Li P. Osmophilic (high sugar) yeast strain breeding. Anhui: Anhui Agriculture University, MSD, 2010, doi: 10.7666/d.y1735038.
[10] Bosshart A, Wagner N, Bechtold M, et al. Improving the thermostability of D-tagatose 3-epimerase for the production of the rare sugar D-psicose. New Biotechnology, 2012, 29: 1.
[11] Knoshaug E P, Zhang M. Butanol tolerance in a selection of microorganisms. Applied Biochemistry and Biotechnology, 2009, 153 (1-3): 13-20.
[12] Manitchotpisit P, Bischoff K M, Price N P, et al. Bacillus spp. produce antibacterial activities against lactic acid bacteria that contaminate fuel ethanol plants. Current Microbiology, 2013, 66(5): 443-449.
[13] Westfall P J, Gardner T S. Industrial fermentation of renewable diesel fuels. Current Opinion in Biotechnology, 2011, 22 (3): 344-350.
[14] 郑进保. 药用植物提取物在控制酒精发酵染菌和抑制肠道有害菌中的初步研究. 厦门大学, 2008, doi: 10.7666/d.y1442878. Zheng J B. Study on medicinal plant extracts using in controlling of ethanol fermentation bacteria and inhibiting harmful intestinal bacteria in preliminary. Xiamen: Xiamen University, MSD, 2008, doi: 10.7666/d.y1442878.
[15] 中国科学院生命科学与生物技术局.2007年工业生物技术发展报告.北京:科学出版社, 2008. Office of Life Science and Technology in Chinese Academy of Sciences. Industrial Biotechnology Development Report in 2007. Beijing: Science Press, 2008.
[16] Brethauer S, Wyman C E. Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technology, 2010, 101 (13): 4862-4874.
[17] 魏瑛. 里氏木霉发酵生产木聚糖酶的研究. 江南大学, 2008, 10.7666/d.y1397547. Wei Y. Study on the xylanase fermentation using Trichoderma reesei. Wuxi:Jiangnan University, MSD, 2008, 10.7666/d.y1397547.
[18] 林贝, 赵心清, 葛旭萌, 等. 玉米秸秆酸解副产物对重组酿酒酵母6508-127发酵的影响. 中国生物工程杂志, 2007, 27(7): 61-67. Lin B, Zhao X Q, Ge X M, et al. The effects of dilute acid hydrolysate by-products of corn stover on ethanol fermentation of xylose-utilising Saccharomyces cerevisiae 6508-127. China Biotechnology, 2007, 27 (7): 61-67.
[19] Liu Z L, Slininger P J, Dien B S, et al. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2, 5-bis-hydroxymethlfuran. Journal of Industrial Microbiology and Biotechnology, 2004, 31 (8): 345-352.
[20] Klinke H B, Thomsen A B, Ahring B K. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology Biotechnology, 2004, 66 (1): 10-26
[21] 谢忠设, 张建民.纤维素乙醇成本接近粮食乙醇. 中国化工报[EB/OL]. http://www.ccin.com.cn/ccin/news/2012/08/07/236290.shtml. Xie Z S, Zhang J M. The cost of cellulosic ethanol is almost the same as grain ethanol. China Chemical Industry News, http://www.ccin.com.cn/ccin/news/2012/08/07/236290.shtml.
[22] Widiastuti H, Kim J Y, Selvarasu S, et al. Genome-scale modeling and in silico analysis of ethanologenic bacteria Zymomonas mobilis. Biotechnology Bioengineering, 2011, 108(3): 655-665.
[23] Muthaiyan A, Ricke C S. Current perspectives on detection of microbial contamination in bioethanol fermentors. Bioresource Technology, 2010, 101 (13): 5033-5042.
[24] Schell D J, Dowe N, Ibsen K N, et al. Contamination occurrence, identification and control in a pilot-scale corn fiber to ethanol conversion process. Bioresource Technology, 2007, 98 (15): 2942-2948.
[25] Narendranath N V, Power R. Relationship between pH and medium dissolved solids in terms of growth and metabolism of Lactobacilli and Saccharomyces cerevisiae during ethanol production. Applied and Environmental Microbiology, 2005, 71 (5): 2239-2243.
[26] Thomas K C, Hynes S H, Ingledew W M. Effect of lactobacilli on yeast growth, viability and batch and semi-continuous alcoholic fermentation of corn mash. Journal of Applied Microbiology, 2001, 90 (5): 819-828.
[27] Skinner K A, Leathers T D.Bacterial contaminants of fuel ethanol production. Journal of Industrial Microbiology and Biotechnology, 2004, 31 (9), 401-408.
[28] Graves T, Narendranath N V, Dawson K, et al. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. Journal of Industrial Microbiology and Biotechnology, 2006, 33 (6): 469-474.
[29] Bayrock D P, Ingledew W M.Inhibition of yeast by lactic acid bacteria in continuous culture:nutrient depletion and/or acid toxicity. Journal of Industrial Microbiology and Biotechnology, 2004, 31(8): 362-368.
[30] Katakura Y, Moukamnerd C, Harashima S, et al. Strategy for preventing bacterial contamination by adding exogenous ethanol in solid-state semi-continuous bioethanol production. Journal of Bioscience Bioengineering, 2011, 111 (3): 343-345.
[31] Watanabe I, Nakamura T, Shima J. A strategy to prevent the occurrence of Lactobacillus strains using lactate-tolerant yeast Candida glabrata in bioethanol production. Journal of Industrial Microbiology Biotechnology, 2008, 35 (10): 1117-1122.
[32] Bischoff K M, Liu S, Leathers T D, et al. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnology and Bioengineering, 2009, 103 (1): 117-122.
[33] Saithong P, Nakamura T, Shima J. Prevention of bacterial contamination using acetate-tolerant Schizosaccharomyces pombe during bioethanol production from molasses. Journal of Bioscience Bioengineer, 2009, 108 (3): 216-219.
[34] Narendranath N V, Thomas K C, Ingledew W M. Urea hydrogen peroxide reduces the numbers of lactobacilli, nourishes yeast, and leaves no residues in the ethanol fermentation. Applied and Environmental Microbiology, 2000, 66 (10): 4187-4192.
[35] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 2013, 110 (9): 3435-3440.
[36] 程书梅, 李慧颖, 顾金兰, 等. 酿酒酵母的乳酸抗性机制. 湖北农业科学, 2012, 51 (2): 367-368. Cheng S M, Li H Y, Gu J L, et al. Study on mechanism of lactic acid resistant of Saccharomyces cerevisiae. Hubei Agricultural Sciences, 2012, 51 (2): 367-368.
[37] Limtong S, Sringiew C, Yongmanitchai W. Production of fuel ethanol at high temperature from sugar cane juice by newly isolated Kluyveromyces marxianus. Bioresource Technology, 2007, 98 (17): 3367-3374.
[38] Watanabe T, Srichuwong S, Arakane M, et al. Selection of stress-tolerant yeasts for simultaneous saccharification and fermentation (SSF) of very high gravity (VHG) potato mash to ethanol. Bioresource Technology, 2010, 101 (24): 9710-9714.
[39] Solomon E B, Okull D. Utilization of bacteriophage to control bacterial contamination in fermentation processes. U.S., 20090104157, 2009.
[40] Bothast R J, Schlicher M A. Biotechnological processes for conversion of corn into ethanol. Applied Microbiology and Biotechnology, 2005, 67 (1): 19-25.
[41] Gil G, del Monaco S, Cerrutti P, et al. Selective antimicrobial activity of chitosan on beer spoilage bacteria and brewing yeasts. Biotechnology Letter, 2004, 26 (7): 569-574.
[42] Enrique M, Manzanares P, Yuste M, et al. Selectivity and antimicrobial action of bovine lactoferrin derived peptides against wine lactic acid bacteria. Food Microbiology, 2009, 26 (3): 340-346.
[43] Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: a review. Bioresource Technology, 2007, 98 (12): 2321-2334.
[44] Tang T Q, An M Z, Zhong Y L, et al. Continuous ethanol fermentation from non-sulfuric acid-washed molasses using traditional stirred tank reactors and the flocculating yeast strain KF-7. Journal of Bioscience Bioengineering, 2010, 109 (1): 41-46.
[45] 王风芹, 楚乐然, 谢慧, 等. 纤维燃料丁醇研究进展. 生物加工过程, 2009, 7 (1): 1-6. Wang F Q, Chu L R, Xie H, et al. Progress and prospective of cellulosic butanol biofuel. Chinese Journal of Bioprocess Engineer, 2009, 7 (1): 1-6.
[46] 孙彦平, 靳艳玲, 李新波, 等. 木质纤维素生产燃料丁醇工艺的研究进展. 中国酿造, 2010, (11): 17-22. Sun Y P, Jin Y L, Li X B, et al. Research progress of butanol production from lignocelluloses. China Brewing, 2010, (11): 17-22.
[47] Ennis B M, Gutierrez N A, Maddox I S. The acetone-butanol-ethanol fermentation: a current assessment. Process Biochemistry, 1986, 21 (5): 131-147.
[48] Anbarasan P, Baer Z C, Sreekumar S, et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature, 2012, 491 (7423): 235-239.
[49] Posten C, Schaub G. Microalgae and terrestrial biomass as source for fuels—a process view. Journal of Biotechnology, 2009, 142 (1): 64-69.
[50] 任云峰. 藻类能源——打开未来能源困局的钥匙? 中国生物柴油, 2010, (5): 6-7. Ren Y F. Algae Energy—the key to open the future energy dilemma? China Biodiesel, 2010, (5):6-7.
[51] Kazamia E, Aldridge D C, Smith A G. Synthetic ecology—a way forward for sustainable algal biofuel production? Journal of Biotechnology, 2012, 162 (1): 163-169.
[52] Lee Y K. Microalgal mass culture systems and methods: their limitations and potential. Journal of Applied Phycology, 2001, 13, 307-315.
[53] Li H, Ma M L, Luo S, et al. Metabolic responses to ethanol in Saccharomyces cerevisiae using a gas chromatography tandem mass spectrometry-based metabolomics approach. The International Journal of Biochemistry and Cell Biology, 2012, 44 (7): 1087-1096.
[1] 高寅岭,张凤娇,赵贵众,张宏森,王风芹,宋安东. 衣康酸发酵研究进展[J]. 中国生物工程杂志, 2021, 41(5): 105-113.
[2] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[3] 杨娜,吴群,徐岩. 解淀粉芽孢杆菌合成surfactin的发酵策略优化 *[J]. 中国生物工程杂志, 2020, 40(7): 51-58.
[4] 王泽建,栗波,王萍,张琴,杭海峰,梁剑光,庄英萍. 葡萄糖和麦芽糖碳源底物对粪产碱杆菌合成凝胶多糖的胞内代谢流影响*[J]. 中国生物工程杂志, 2020, 40(5): 30-39.
[5] 王蒙,张全,高慧鹏,关浩,曹长海. 生物发酵法制备木糖醇的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 144-153.
[6] 王宝石,谭凤玲,李林波,李志刚,孟丽,邱立友,张明霞. 生物处理策略改善麸皮酚类化合物的生物可及性*[J]. 中国生物工程杂志, 2020, 40(12): 88-94.
[7] 彭强强,刘启,徐名强,张元兴,蔡孟浩. 新型重组毕赤酵母产人胰岛素前体的表达工艺研究 *[J]. 中国生物工程杂志, 2019, 39(7): 48-55.
[8] 王鑫淼,张康,陈晟,吴敬. 嗜热网球菌纤维二糖差向异构酶在枯草芽孢杆菌中的表达及发酵优化 *[J]. 中国生物工程杂志, 2019, 39(7): 24-31.
[9] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[10] 任莉琼,吴敬,陈晟. 共表达N-乙酰转移酶提高Aspergillus nidulans α-葡糖苷酶在毕氏酵母中的表达研究 *[J]. 中国生物工程杂志, 2019, 39(10): 75-81.
[11] 黄燕,孙益荣,吴敬,宿玲恰. 重组Humicola insolens角质酶的高密度发酵优化 *[J]. 中国生物工程杂志, 2019, 39(1): 63-70.
[12] 赵俊杰,张龙,王靓,陈旭升,毛忠贵. 具有双重抗生素抗性的ε-聚赖氨酸高产菌株选育及生理特性 *[J]. 中国生物工程杂志, 2018, 38(8): 59-68.
[13] 孙帆,宿玲恰,张康,吴敬. D-阿洛酮糖 3-差向异构酶在枯草芽孢杆菌中的高效表达及固定化细胞研究 *[J]. 中国生物工程杂志, 2018, 38(7): 83-88.
[14] 樊亚超,张霖,李晓姝,王鹏翔,姚新武,乔凯. Klebsiella pneumoniae CICC10011发酵产2,3-丁二醇的工艺研究[J]. 中国生物工程杂志, 2018, 38(2): 68-74.
[15] 程丽娜,陆海燕,曲淑玲,张轶群,丁娟娟,邹少兰. 微生物发酵法生产环磷酸腺苷研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 102-108.