Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (11): 99-105    
综述     
蛋白片段互补分析技术研究进展
黄欣媛1, 范红波2, 邹礼平1
1 湖北工程学院 特色果蔬质量安全控制湖北省重点实验室 孝感 432000;
2 湖北职业技术学院 孝感 432000
Progress in Protein Fragment Complementation Assay
HUANG Xin-yuan1, FAN Hong-bo2, ZOU Li-ping1
1. Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Xiaogan 432000, China;
2. Hubei Polytechnic Institute, Xiaogan 432000, China
 全文: PDF(432 KB)   HTML
摘要: 基于报告蛋白功能重建的蛋白片段互补分析(protein fragment complementation assay,PCA)技术是研究体内蛋白质相互作用重要方法,可检测和分析蛋白相互作用及其时空变化和调节因素。目前已开发出多种不同报告蛋白的PCA系统,具有灵敏度高、信噪比高、可定量和高通量化、适用范围广等特点。主要对PCA的原理、不同类型及其应用领域等方面进行阐述,并展望其发展前景。
关键词: 蛋白片段互补蛋白质相互作用功能重建    
Abstract: Protein fragment complementation assay(PCA) is an important method to study in vivo protein-protein interactions(PPIs). In PCA, PPI is coupled to refolding of a reporter protein from two cognate fragments where reconstitution of reporter activity acts as the detector of a protein interaction. PCAs based on different types of reporter proteins have been developed to detect in vivo PPIs as well as their modulation or spatial and temporal changes. To date, successful applications of PCA have been widely reported in many areas such as the study of interactome networks, screening for binding partners and drug discovery, owing to its high sensitivity, high signal-to-background ratio, and high throughput. Different types of PCAs and their application aspects are summarized, together with the limitations and development prospects.
Key words: Protein fragment complementation assay    Protein-protein interaction    Functional reconstitution
收稿日期: 2013-08-19 出版日期: 2013-11-25
ZTFLH:  Q31  
通讯作者: 黄欣媛     E-mail: lieslh@sohu.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
范红波
邹礼平
黄欣媛

引用本文:

黄欣媛, 范红波, 邹礼平. 蛋白片段互补分析技术研究进展[J]. 中国生物工程杂志, 2013, 33(11): 99-105.

HUANG Xin-yuan, FAN Hong-bo, ZOU Li-ping. Progress in Protein Fragment Complementation Assay. China Biotechnology, 2013, 33(11): 99-105.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I11/99

[1] Chen Y, Li S, Chen T, et al. Random dissection to select for protein split sites and its application in protein fragment complementation. Protein Sci, 2009, 18(2): 399-409.
[2] Morell M, Espargaro A, Aviles F X, et al. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics, 2007, 7(7): 1023-1036.
[3] Morell M, Ventura S, Avilés F X. Protein complementation assays: Approaches for the in vivo analysis of protein interactions. FEBS Letters, 2009, 583(11): 1684-1691.
[4] Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A, 1994, 91(22): 10340-10344.
[5] Stagljar I, Korostensky C, Johnsson N, et al. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proc Natl Acad Sci U S A, 1998, 95(9): 5187-5192.
[6] Miller J P, Lo R S, Ben-Hur A, et al. Large-scale identification of yeast integral membrane protein interactions. Proc Natl Acad Sci USA, 2005, 102(34): 12123-12128.
[7] Rahim G, Bischof S, Kessler F, et al. In vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system. J Exp Bot, 2009, 60(1): 257-267.
[8] Petschnigg J, Wong V, Snider J, et al. Investigation of membrane protein interactions using the split-ubiquitin membrane yeast two-hybrid system. Methods Mol Biol, 2012, 812: 225-244.
[9] Pelletier J N, Campbell-Valois F X, Michnick S W. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proc Natl Acad Sci USA, 1998, 95(21): 12141-12146.
[10] Shibasaki S, Sakata K, Ishii J, et al. Development of a yeast protein fragment complementation assay (PCA) system using dihydrofolate reductase (DHFR) with specific additives. Appl Microbiol Biotechnol, 2008, 80(4): 735-743.
[11] Remy I, Michnick S W. Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proc Natl Acad Sci USA, 1999, 96(10): 5394-5399.
[12] Subramaniam R, Desveaux D, Spickler C, et al. Direct visualization of protein interactions in plant cells. Nat Biotechnol, 2001, 19(8): 769-772.
[13] Tarassov K, Messier V, Landry C R, et al. An in vivo map of the yeast protein interactome. Science, 2008, 320(5882): 1465-1470.
[14] Lim Y H, Charette J M, Baserga S J. Assembling a protein-protein interaction map of the SSU processome from existing datasets. PLoS One, 2011, 6(3): e17701.
[15] Schlecht U, Miranda M, Suresh S, et al. Multiplex assay for condition-dependent changes in protein-protein interactions. Proc Natl Acad Sci USA, 2012, 109(23): 9213-9218.
[16] Galarneau A, Primeau M, Trudeau L E, et al. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nat Biotechnol, 2002, 20(6): 619-622.
[17] Lee H K, Brown S J, Rosen H, et al. Application of beta-lactamase enzyme complementation to the high-throughput screening of toll-like receptor signaling inhibitors. Mol Pharmacol, 2007, 72(4): 868-875.
[18] Ou W, Marino M P, Lu C, et al. Rapid titration of retroviral vectors using a beta-lactamase protein fragment complementation assay. Gene Ther, 2013, 20(1): 43-50.
[19] Ozawa T, Kaihara A, Sato M, et al. Split luciferase as an optical probe for detecting protein-protein interactions in mammalian cells based on protein splicing. Anal Chem, 2001, 73(11): 2516-2521.
[20] Paulmurugan R, Gambhir S S. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Anal Chem, 2003, 75(7): 1584-1589.
[21] Remy I, Michnick S W. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nat Methods, 2006, 3(12): 977-979.
[22] Kim S B, Otani Y, Umezawa Y, et al. Bioluminescent indicator for determining protein-protein interactions using intramolecular complementation of split click beetle luciferase. Anal Chem, 2007, 79(13): 4820-4826.
[23] Luker K E, Mihalko L A, Schmidt B T, et al. In vivo imaging of ligand receptor binding with Gaussia luciferase complementation. Nat Med, 2012, 18(1): 172-177.
[24] Hida N, Awais M, Takeuchi M, et al. High-sensitivity real-time imaging of dual protein-protein interactions in living subjects using multicolor luciferases. PLoS One, 2009, 4(6): e5868.
[25] Stefan E, Aquin S, Berger N, et al. Quantification of dynamic protein complexes using Renilla luciferase fragment complementation applied to protein kinase A activities in vivo. Proc Natl Acad Sci USA, 2007, 104(43): 16916-16921.
[26] Malleshaiah M K, Shahrezaei V, Swain P S, et al. The scaffold protein Ste5 directly controls a switch-like mating decision in yeast. Nature, 2010, 465(7294): 101-105.
[27] Paulmurugan R, Umezawa Y, Gambhir S S. Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proc Natl Acad Sci USA, 2002, 99(24): 15608-15613.
[28] Ghosh I, Hamilton A D, Regan L. Antiparallel leucine zipper-directed protein reassembly: application to the green fluorescent protein. J Am Chem Soc, 2000, 122: 5658-5659.
[29] Jach G, Pesch M, Richter K, et al. An improved mRFP1 adds red to bimolecular fluorescence complementation. Nat Methods, 2006, 3(8): 597-600.
[30] Park K, Yi S Y, Lee C S, et al. A split enhanced green fluorescent protein-based reporter in yeast two-hybrid system. Protein J, 2007, 26(2): 107-116.
[31] Lin J, Wang N, Li Y, et al. LEC-BiFC: a new method for rapid assay of protein interaction. Biotech Histochem, 2011, 86(4): 272-279.
[32] Kojima T, Karasawa S, Miyawaki A, et al. Novel screening system for protein-protein interactions by bimolecular fluorescence complementation in Saccharomyces cerevisiae. J Biosci Bioeng, 2011, 111(4): 397-401.
[33] Chun W, Waldo G S, Johnson G V. Split GFP complementation assay for quantitative measurement of tau aggregation in situ. Methods Mol Biol, 2011, 670: 109-123.
[34] Pu J, Ha C W, Zhang S, et al. Interactomic study on interaction between lipid droplets and mitochondria. Protein Cell, 2011, 2(6): 487-496.
[35] Michnick S W, Ear P H, Landry C, et al. Protein-fragment complementation assays for large-scale analysis, functional dissection and dynamic studies of protein-protein interactions in living cells. Methods Mol Biol, 2011, 756: 395-425.
[36] Karimova G, Pidoux J, Ullmann A, et al. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci USA, 1998, 95(10): 5752-5756.
[37] Battesti A, Bouveret E. The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli. Methods, 2012, 58(4): 325-334.
[38] Borloo J, De Smet L, Vergauwen B, et al. A beta-galactosidase-based bacterial two-hybrid system to assess protein-protein interactions in the correct cellular environment. J Proteome Res, 2007, 6(7): 2587-2595.
[39] Karimova G, Dautin N, Ladant D. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol, 2005, 187(7): 2233-2243.
[40] Verkaar F, van der Stelt M, Blankesteijn W M, et al. Discovery of novel small molecule activators of beta-catenin signaling. PLoS One, 2011, 6(4): e19185.
[41] Ear P H, Michnick S W. A general life-death selection strategy for dissecting protein functions. Nat Methods, 2009, 6(11): 813-816.
[42] Mie M, Naoki T, Uchida K, et al. Development of a split SNAP-tag protein complementation assay for visualization of protein-protein interactions in living cells. Analyst, 2012, 137(20): 4760-4765.
[43] Horecka J, Charter N W, Bosano B L, et al. Antibody-free method for protein detection on blots using enzyme fragment complementation. Biotechniques, 2006, 40(3): 381-383.
[44] Charter N W, Horecka J, Loh C Y, et al. Rapid, antibody-free detection of recombinant proteins on blots using enzyme fragment complementation. Methods Mol Biol, 2009, 536: 395-405.
[45] Kaddoum L, Magdeleine E, Waldo G S, et al. One-step split GFP staining for sensitive protein detection and localization in mammalian cells. Biotechniques, 2010, 49(4): 727-728, 730, 732 passim.
[46] Remy I, Michnick S W. A cDNA library functional screening strategy based on fluorescent protein complementation assays to identify novel components of signaling pathways. Methods, 2004, 32(4): 381-388.
[47] Lee S, Lee I, Jung Y, et al. In-frame cDNA library combined with protein complementation assay identifies ARL11-binding partners. PLoS One, 2012, 7(12): e52290.
[48] Chen Y, Hojo S, Matsumoto N, et al. Regulation of Mac-2BP secretion is mediated by its N-glycan binding to ERGIC-53. Glycobiology, 2013, 23(7): 904-916.
[49] Mossner E, Koch H, Pluckthun A. Fast selection of antibodies without antigen purification: adaptation of the protein fragment complementation assay to select antigen-antibody pairs. J Mol Biol, 2001, 308(2): 115-122.
[50] Koch H, Grafe N, Schiess R, et al. Direct selection of antibodies from complex libraries with the protein fragment complementation assay. J Mol Biol, 2006, 357(2): 427-441.
[51] Secco P, D’Agostini E, Marzari R, et al. Antibody library selection by the beta-lactamase protein fragment complementation assay. Protein Eng Des Sel, 2009, 22(3): 149-158.
[52] MacDonald M L, Westwick J K. Exploiting network biology to improve drug discovery. Methods Mol Biol, 2007, 356: 221-232.
[53] Xie W, Pao C, Graham T, et al. Development of a cell-based high throughput luciferase enzyme fragment complementation assay to identify nuclear-factor-e2-related transcription factor 2 activators. Assay Drug Dev Technol, 2012, 10(6): 514-524.
[54] Zhao X, Jones A, Olson K R, et al. A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J Biomol Screen, 2008, 13(8): 737-747.
[55] Sung M K, Lim G, Yi D G, et al. Genome-wide bimolecular fluorescence complementation analysis of SUMO interactome in yeast. Genome Res, 2013, 23(4): 736-746.
[56] Rackham O, Brown C M. Visualization of RNA-protein interactions in living cells: FMRP and IMP1 interact on mRNAs. EMBO J, 2004, 23(16): 3346-3355.
[57] Valencia-Burton M, McCullough R M, Cantor C R, et al. RNA visualization in live bacterial cells using fluorescent protein complementation. Nat Methods, 2007, 4(5): 421-427.
[58] Shyu Y J, Hu C D. Fluorescence complementation: an emerging tool for biological research. Trends Biotechnol, 2008, 26(11): 622-630.
[1] 孟坤, 何庆瑜, 王通, 卢少华. 基于C6流式细胞仪平台应用FRET技术在活细胞中研究蛋白质相互作用[J]. 中国生物工程杂志, 2017, 37(5): 45-51.
[2] 张晨晨, 孟志忠, 陆远芳, 陈新, 李杉. 脱氮硫杆菌硫化合物载体SoxYZ蛋白的同源建模和结构分析[J]. 中国生物工程杂志, 2015, 35(7): 68-75.
[3] 陈思群, 孙自才, 陈建军, 陈晓晖. 糖-蛋白质相互作用在酶固定及蛋白质识别与分离中的应用[J]. 中国生物工程杂志, 2012, 32(04): 83-88.
[4] 吴丽, 杨成红, 邓思思, 周宇波, 钱旻, 臧奕. 应用酵母双杂交系统筛选AMPK相互作用蛋白[J]. 中国生物工程杂志, 2012, 32(02): 1-7.
[5] 黎玉叶, 李星星, 孙双双, 邹正渝, 张昀源, 段亮, 叶立伟, 武睿, 杨霞, 何通川, 周兰. S100A6蛋白对细胞中β-catenin水平的影响及可能机制[J]. 中国生物工程杂志, 2011, 31(11): 18-23.
[6] 刘子杰,翁亚光,李素彦,施琼,蔡燕,刘斌,张燕,阎琛. 用FRET方法研究与Mps1蛋白有相互作用的CENP-E蛋白结构域[J]. 中国生物工程杂志, 2009, 29(04): 28-34.
[7] 范春香,崔韬,谷利,张韬,刘琦,赵焕英,赵春礼,杨慧. 帕金森病相关蛋白PINK1和α-突触核蛋白相互作用研究[J]. 中国生物工程杂志, 2008, 28(12): 7-11.
[8] 李斌元, 何淑雅, 王桂良, 马云, 肖卫纯, 李洁, 孙春丽, 闵凌峰, 虞佳, NanbertZhong. Bax Inhibitor-1与Herp的相互作用[J]. 中国生物工程杂志, 2005, 25(11): 21-25.
[9] 马海蓉, 李维琪. 酵母双杂交衍生系统[J]. 中国生物工程杂志, 2003, 23(2): 37-41.
[10] 李伯良, 李林, 吴家睿. 功能蛋白质组学[J]. 中国生物工程杂志, 1999, 19(4): 15-16.
[11] 巩学千, 陈受宜. 蛋白激酶:一个飞速发展的领域[J]. 中国生物工程杂志, 1996, 16(1): 11-14.