Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (11): 56-62    
技术与方法     
四环素核酸适配体电化学生物传感器的研制
陈丹1,2, 姚冬生1,2, 谢春芳1,3, 刘大岭1,3
1 暨南大学微生物技术研究所 广州 510632;
2 基因工程药物国家工程研究中心 广州 510632;
3 暨南大学生物工程系 广州 510632
Development of an Aptasensor for Electrochemical Detection of Tetracycline
CHEN Dan1,2, YAO Dong-sheng1,2, XIE Chun-fang1,3, LIU Da-ling1,3
1 Institute of Microbial Technology, Guangzhou 510632, China;
2 National Engineering Research Center of Genetic Medicine, Guangzhou 510632, China;
3 Biological Engineering, Jinan University, Guangzhou 510632, China
 全文: PDF(1483 KB)   HTML
摘要: 农产品抗生素残留是目前动物性食品安全中的突出问题。四环素的简便、快速检测方法是食品安全控制中十分重要的技术。本研究利用等温滴定量热法筛选到的四环素核酸适配体做识别分子制作生物传感器,用电化学方法研究了该生物传感器检测四环素的电化学行为。结果:等温滴定量热法筛选出一条对四环素有高亲和力的适配体,解离平衡常数Kd=51.8μmol/L。差分脉冲伏安分析,在5.0~5.0×103μg/L 浓度范围内,峰电流值的变化△Ip与四环素浓度的对数呈现良好的线性关系,相关系数R2=0.987 6,检测限为1.0 μg/L,反应时间为15min。该检测限明显低于目前国家限定的四环素残留量(6.0×102μg/L),也低于目前其他报道的四环素适配体传感器的检测限。
关键词: 四环素核酸适配体电化学    
Abstract: The residual antibiotics in agricultural products became one of the most noticeable problems for animal derived food security, which caused many known and potential harm to public health. One of the most common antibiotics used in fodder animals is tetracyclines. Developing the rapid, simple and sensitive biosensor system for tetracyclines detection is very important in food safety control. In this paper, a tetracycline binding aptamer, whose recognition is confirmed by Isothermal Titration Calorimetry, is used as bio-recognizer. The developed biosensor in tetracycline detection and the electrochemical behavior are investigated. Results: By using isothermal titration calorimetry, the aptamer shows a high affinity to tetracycline, the dissociation equilibrium constant is at Kd=51.8μmol/L. According to the differential pulse voltammetry (DPV) analysis, there is a linear relationship between the log concentration of tetracycline and the charge transfer resistance (ΔIp) in the tetracycline conc. ranges from 5.0 to 5.0×103μg/L with correlation coefficient of 0.987 6. The detection limit is at 1.0μg/L within a detection time of 15 min. The detection limit lies obviously lower than the National limited residue of tetracycline (6.0×102μg/L) and also lower than other reported aptasensor for tetracycline.
Key words: Tetracycline    Aptamer    Electrochemical
收稿日期: 2013-08-28 出版日期: 2013-11-25
ZTFLH:  TP212.6  
基金资助: 广东省农村领域科技计划重点项目(2012A020200003)、广东省农业科技攻关重点项目(00443690169188037)资助项目
通讯作者: 刘大岭     E-mail: tldl@jnu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈丹
姚冬生
刘大岭
谢春芳

引用本文:

陈丹, 姚冬生, 谢春芳, 刘大岭. 四环素核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2013, 33(11): 56-62.

CHEN Dan, YAO Dong-sheng, XIE Chun-fang, LIU Da-ling. Development of an Aptasensor for Electrochemical Detection of Tetracycline. China Biotechnology, 2013, 33(11): 56-62.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I11/56

[1] 代敏. PCR和核酸探针检测猪源沙门氏菌四环素耐药基因tetC的研究. 四川:四川农业大学, 预防兽医学, 2003. Dai M. Study on Detection of Tetracycline Resistance gene(tetC) of Pathogenic Salmonella from Swine by PCR and Nucleic Acid Probe. Sichuan: Sichuan Agricultural University, Prevention Veterinary Science, 2003.
[2] Wang H T, Zhao H M, Quan X, et al. Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode. Electroanalysis, 2011, 23(8):1863 -1869
[3] Kurittu J, Lonnberg S, Virta M, et al. A Group-specific microbiological test for the detection of tetracycline residues in raw milk. Journal of Agricultural and Food Chemistry, 2000, 48 (8):3372-3377.
[4] Choma I M. TLC Determination of tetracyclines in milk. Journal of Planar Chromatography, 2000, 13 (4): 261-265.
[5] Cliquina A L, Longo F, Anastasi G, et al. Validation of a high-performance liquid chromatography method for the determination of oxytetracycline, tetracycline, chlortetracycline and doxycycline in bovine milk and muscle. Journal of Chromatography, 2003, 987 (1-2): 227-233.
[6] Cherlet M, De Baere S, De Backer P. Quantitative analysis of oxytetracycline and its 4-epimer in calf tissues by high-performance liquid chromatography combined with positive electrospray ionization mass spectrometry. Analyst, 2003, 128 (7):871-878.
[7] Consuelo C P, Maquieiraa A, Puchadesa R, et al. Immunochemical determination of oxytetracycline in fish: Comparison between enzymatic and time-resolved fluorometric assays. Analytica Chimica Acta, 2010, 662 (2): 177-185.
[8] Kim Y J, Kim Y S, Niazi J H. Electrochemical aptasensor for tetracycline detection. Bioprocess Biosyst Eng, 2010, 33:31-37.
[9] Ellinglon A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346 (6287): 818-822.
[10] Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249 (4968): 505-510.
[11] Citartan M, Gopinath S C, Tominag J J, et al. Assays for aptamer-based platforms. Biosensors and Bioelectronics, 2012, 34 (1): 1-11.
[12] Rebekah R. White L, Bruce A, et al. Developing aptamers into therapeutics. The Journal of Clinical Investigation. 2000, 106 (8): 929-934.
[13] Shangguan D, Li Y, Tang Z, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natil Acad Sci USA, 2006, 103(32): 11838-11843.
[14] Tombelli S, Minunni M, Mascini M. Analytical applications of aptamers. Biosensors and Bioelectronics, 2005, 20(12): 2424-2434.
[15] Lares M R, Rossi J J, Ouellet D L. RNAi and small interfering RNAs in human disease therapeutic applications, 2010, 28(11): 570-579.
[16] Nicholas O F, Theodore M T, Jeffrey B H T. Aptasensors for biosecurity applications. Current Opinion in Chemical Biology, 2007, 11(3): 316-328.
[17] Zhou L, Li D J, Gai L, et al. Electrochemical aptasensor for the detection of tetracycline with multi-walled carbon nanotubes amplification. Sensors and Actuators B: Chemical, 2012, 162 (1): 201-208.
[18] Song S P, Wang L H, Li J, et al. Aptamer-based biosensors. Trends in Analytical Chemistry, 2008, 27 (2): 108-117.
[19] Herne T M, Tarlov M J. Characterization of DNA probes immobilized on gold surfaces. Journal of the Americal Chemical Society, 1997, 119 (38): 8916-8920.
[20] 中华人民共和国农业部公告第 235 号. 动物性食品中兽药最高残留限量. 2002. The Bulletin No.235 Issued by Agricultural Ministry of the People'sRepublic of China. Maximum Residue Limits (MRL) for Veterinarychemicals in Animal Tissues. 2002. Chinese.
[1] 刘少金,冯雪娇,王俊姝,肖正强,程平生. 我国核酸药物市场分析及对策建议[J]. 中国生物工程杂志, 2021, 41(7): 99-109.
[2] 秦思楠,唐录华,高文惠. 恩诺沙星分子印迹电化学传感器的制备及其在食品快速检测中的应用 *[J]. 中国生物工程杂志, 2019, 39(3): 65-74.
[3] 苏艺,蒋灵丽,林俊生. 小分子靶标与其核酸适配体亲和力的表征方法 *[J]. 中国生物工程杂志, 2019, 39(11): 96-104.
[4] 罗婉月, 李天明, 于莹, 许湄雪, 仪宏. Ketogulonigenium vulgare四环素诱导表达穿梭质粒的构建[J]. 中国生物工程杂志, 2015, 35(5): 81-86.
[5] 何敏瑜, 冉海涛. 核酸适配体结合纳米材料用于肿瘤靶向治疗[J]. 中国生物工程杂志, 2015, 35(4): 86-91.
[6] 杨敏, 陈丹, 姚冬生, 谢春芳, 刘大岭. 技术与方法β-激动剂核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2015, 35(11): 52-60.
[7] 周妮, 陈丹, 姚冬生, 谢春芳, 刘大岭. 莱克多巴胺核酸适配体电化学生物传感器的研制[J]. 中国生物工程杂志, 2014, 34(1): 42-49.
[8] 张力, 罗一博, 牟彦双, 朱江, 李慧, 刘忠华. 猪Nanog基因四环素诱导干扰载体的构建和鉴定[J]. 中国生物工程杂志, 2011, 31(9): 35-42.
[9] 王淑艳,张愚. 慢病毒载体的设计及应用进展[J]. 中国生物工程杂志, 2006, 26(11): 70-75.
[10] A.J.Mcloughlin, 聂世芳. 生物电子学—测量发酵参数的新方法[J]. 中国生物工程杂志, 1987, 7(5): 53-58.
[11] 乃晨. 遗传饰变的微生物及其制备和使用方法(续)[J]. 中国生物工程杂志, 1983, 3(1): 69-75.
[12] J.Padayatty, 张燕生. 鸡珠旦白cDNA在细菌质体中的克隆[J]. 中国生物工程杂志, 1982, 2(3): 15-19.