Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (6): 93-97    
综述     
基于RNA的抗HIV-1基因治疗方法研究进展
陈丰, 杨怡姝, 曾毅
北京工业大学生命科学与生物工程学院 北京 100124
Current Development on RNA-based Anti-HIV-1 Gene Therapy
CHEN Feng, YANG Yi-shu, ZENG Yi
College of Life Science and Bio-engineering, Beijing University of Technology, Beijing 100124, China
 全文: PDF(421 KB)   HTML
摘要: 艾滋病自发现以来在全球范围内迅速蔓延,危害性极高,目前广泛采用的高效抗逆转录病毒疗法(HAART)虽能够显著提高HIV-1感染者生活质量,但存在着价格昂贵,耐药和副作用的问题经常会导致HAART治疗的中断。要获得长期持续的抗病毒治疗效果还有待于研发新的抗病毒药物和治疗方法。近年来随着分子生物技术、干细胞研究、纳米技术等相关技术的发展,关于抗HIV-1基因治疗方法的研究受到了广泛关注。主要针对基于RNA的抗HIV-1基因治疗方法,包括反义RNA、核酶、RNA诱饵以及RNA干扰技术在抗HIV-1基因治疗方面进行综述。研究表明,以RNA为基础的抗HIV-1基因治疗方法有望成为传统治疗方法的一种有效辅助手段。
关键词: 基因治疗人类免疫缺陷病毒-I型核糖核酸    
Abstract: Acquired immune deficiency syndrome (AIDS) is a high-risk disease which spreads rapidly all over the world since it has been discovered. Although the highly active antiretroviral therapy (HAART) that are widely used in present can improve the quality of life of HIV-1 infected patient dramatically, treatment interruptions have often occurred because of the high cost, drug resistance and side effects. As a result, the new antiretroviral drugs and approaches are demanded for sustained antiretrovial effects. With the development of molecular biology, stem cell, nanotechnology and other related technology, gene therapy for HIV-1 infection has attracted considerable attention in recent years. RNA-based gene therapy for treatment of HIV-1 infection, including antisense RNA, ribozymes, RNA decoys and the RNA interference are focused on. These studies demonstrated that the RNA-based anti-HIV-1 gene therapy may serve as an effective adjuvant to traditional treatments.
Key words: Gene therapy    Human Immunodeficiency Virus Type-1 (HIV-1)    RNA
收稿日期: 2012-01-10 出版日期: 2012-06-25
ZTFLH:  Q819  
基金资助: 国家重点基础研究发展计划(2009CB930202)、北京市教委科技创新平台项目(PXM2001-014204-09.000305)
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈丰
杨怡姝
曾毅

引用本文:

陈丰, 杨怡姝, 曾毅. 基于RNA的抗HIV-1基因治疗方法研究进展[J]. 中国生物工程杂志, 2012, 32(6): 93-97.

CHEN Feng, YANG Yi-shu, ZENG Yi. Current Development on RNA-based Anti-HIV-1 Gene Therapy. China Biotechnology, 2012, 32(6): 93-97.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I6/93

[1] Gebo K A, Fleishman J A, Conviser R, et al. Contemporary costs of HIV healthcare in the HAART era. AIDS, 2010, 24: 2705-2715.
[2] Richman D D, Margolis D M, Delaney M, et al. The challenge of finding a cure for HIV infection. Science, 2009, 323: 1304-1307.
[3] Rubanyi G M. The future of human gene therapy. Molecular Aspects of Medicine. 2001, 22: 113-142.
[4] Weiss B, Davidkova G, Zhou L W. Antisense RNA gene therapy for studying and modulating biological processes. Cell Mol Life Sci, 1999, 55: 334-358.
[5] Chan J, Lim S. Antisense oligonucleotides: from to therapeutic application. Clin Exp Pharmacol Physiol, 2006, 33 (5/6): 533-540.
[6] Inouye M. Antisense RNA: its functions and applications in gene regulation-a review. Gene, 1988, 72: 25-34.
[7] Ludwig L B, Ambrus J L, Krawczyk K A, et al. Human immunodeficiency virus-type I LTR DNA contains an intrinsic gene producing antisense RNA and protein products. Retrovirology, 2006, 3: 80-83.
[8] Qureshi A, Zheng R, Parlett T, et al. Gene silencing of HIV chemokine receptors using ribozymes and single-stranded antisense RNA. Biochem J, 2006, 394(Pt 2): 511-518.
[9] Probst J C. Antisense oligodeoxynucleotide and ribozyme design. Methods, 2000, 22(3): 271-281.
[10] Peracchi A. Prospects for antiviral ribozymes and deoxyribozymes. Rev Med Virol, 2004, 14: 47-64.
[11] Mulhbacher J, St-PierreP, Lafontaine D A. Therapeutic applications of ribozymes and riboswitches. Curr Opin Pharmacol, 2010, 10: 551-556.
[12] Scarborough J, Lévesque D, Didierlaurent L, et al. In Vitro and in vivo cleavage of HIV-1 RNA by new SOFA-HDV ribozymes and their potential to inhibit viral replication. RNA Biology, 2011, 8(2):343-353.
[13] Mitsuyasu R T, Merigan T C, Carr A, et al. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med, 2009, 15: 285-292.
[14] Unwalla H J, Li H T, Li S Y, et al. Use of a U16 snoRNA-containing ribozyme library to identify ribozyme targets in HIV-1. Mol Ther, 2008, 16(6): 1113-1119.
[15] Nazari R, Ma X Z, Joshi S. Inhibition of human immunodeficiency virus-1 entry using vectors expressing a multimeric hammerhead ribozyme targeting the CCR5 mRNA. J Gen Virol, 2008, 89: 2252-2261.
[16] 徐亮, 何军林, 刘克良. 核酶的研究进展. 中国新药杂志. 2006, 15(10): 759-764. Xu L, He J L, Liu K L. Progresses on ribozymes and deoxyribozymes. Chinese Journal of New Drugs, 2006, 15(10): 759-764.
[17] 张丽娜, 姜凤超. 核酶与AIDS治疗. 中国生物化学与分子生物学报. 2007, 23(2): 106-115. Zhang L N, Jiang F C. Ribozymes in AIDS therapy. Chinese Journal of Biochemistry and Molecular Biology, 2007, 23(2): 106-115.
[18] Strayer D S, Akkina R, Bunnell B A. Current status of gene therapy strategies to treat HIV/AIDS. Mol Ther, 2005, 11(6): 823-842.
[19] Cullen B. Mechanism of action of regulatoty proteins encoded by complex retroviruses. Microbiol Rev, 1992, 56: 375-394.
[20] Sullenger B, Gallardo H, Ungers G, et al. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell, 1990, 63: 601-608.
[21] Tiley L, Malim M, Tewary H, et al. Identification of a high affinity RNA binding site for the HIV-1 Rev protein. Proc Natl Acad Sci USA, 1992, 89: 758-762.
[22] Lee S, Gallardo H, Gilboa E, et al. Inhibition of HIV-1 in human T-cells by a potent RRE decoy comprised of the 13nt nucleotide long minimal Rev binding domain. J Virol, 1994, 68: 8254-8264.
[23] Li M J, Li H T, Rossi J J. RNAi in Combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapty. Ann N Y Acad Sci, 2006, 1082(1): 172-179.
[24] Carthew R W, Sontheimer E J. Origins and mechanisms of miRNAs and siRNAs. Cell, 2009, 136: 642-655.
[25] Fire A, Xu S Q, Montgomery M K, et al. Potent and specific genetic interference by double-strand RNA in Caenorhabditis elegans. Nature, 1998, 391: 806-811.
[26] Tuschl T, Zamore P D, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Gene Dev, 1999, 13: 3191-3197.
[27] Ghildiyal M, Zamore P D. Small silencing RNAs: an expanding universe. Nat Rev Genet, 2009, 10: 94-108.
[28] Ryther R C C, Flynt A S, Phillips III J A, et al. SiRNA therapeutics: big potential from small RNAs. Gene Ther, 2005, 12: 5-11.
[29] Liu Y P, Haasnoot J, Brake O, et al. Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res, 2008, 36(9): 2811-2824.
[30] Ehsani A, Saetrom P, Zhang J, et al. Rational design of micro-RNA-like bifunctional siRNAs targeting HIV and the HIV coreceptor CCR5. Mol Ther, 2010, 18(4): 796-802.
[31] Bertrand J R, Pottier M, Vekris A. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun, 2002, 296: 1000-1004.
[32] Jackson A I, Linsley P S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat Rev Drug Discov, 2010, 9: 57-67.
[33] Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine, 2009, 5: 8-20.
[34] Eguchi A, Meade B R, Chang Y C, et al. Efficient siRNA delivery into primary cells by a peptide. Nat Biotechnol, 2009,27(6):567-571.
[35] Christie R J,Nishiyama N,Kataoka K. Delivering the code: polyplex carriers for deoxyribonucleic acid and ribonucleic acid interference therapies.Eninology,2010,151: 466-473.
[36] Neves J D, Amiji M M, Bahia M F, et al. Nanotechnology-based systems for the treatment and onprevention of HIV/AIDS. Adv Drug Deliver Rev, 2010, 62: 458-477.
[37] Shu Y, Cinier M, Shu D, et al. Assembly of multifunctional phi29 pRNA nanoparticles for specific delivery of siRNA and other therapeutics to targeted cells. Methods, 2011, 54: 204-214.
[38] Zhou J H, Shu Y, Guo P X, et al. Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition. Methods, 2011, 54: 284-294.
[1] 赵晓煜,徐祺玲,赵晓东,安云飞. 基因治疗慢病毒载体的转导增强策略*[J]. 中国生物工程杂志, 2021, 41(8): 52-58.
[2] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[3] 徐应永. 基因治疗产品的开发现状与挑战[J]. 中国生物工程杂志, 2020, 40(12): 95-103.
[4] 陈庆宇,王鲜忠,张姣姣. 基因技术在治疗2型糖尿病中的应用*[J]. 中国生物工程杂志, 2020, 40(11): 73-81.
[5] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[6] 韩亚丽,杨冠恒,陈雁雯,龚秀丽,张敬之. 表达β-珠蛋白基因的安全性慢病毒载体的优化 *[J]. 中国生物工程杂志, 2018, 38(7): 50-57.
[7] 刘怡萱, 边珍, 马红梅. 癌症基因治疗技术进展与展望[J]. 中国生物工程杂志, 2016, 36(5): 106-111.
[8] 陶嫦立, 黄树林. TCR基因免疫治疗中优化转TCR基因配对的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 87-92.
[9] 刘瑞琪, 王玮玮, 吴勇延, 赵秋云, 王勇胜, 卿素珠. CRISPR-Cas9研究进展及在基因治疗上的应用[J]. 中国生物工程杂志, 2016, 36(10): 72-78.
[10] 朱少义, 管丽红, 林俊堂. CRISPR-Cas9系统在疾病模型中的应用[J]. 中国生物工程杂志, 2016, 36(10): 79-85.
[11] 薛金锋, 薛志刚, 陈毅瑶, 李卓, 尹彪, 邬玲仟, 梁德生. 增强型肿瘤特异性启动子介导CDTK治疗肝癌的体内外研究[J]. 中国生物工程杂志, 2015, 35(6): 1-7.
[12] 薛玉文, 李铁军, 周家名, 陈莉. 多靶向RNA干扰技术在基因治疗中的应用与前景[J]. 中国生物工程杂志, 2015, 35(1): 75-81.
[13] 张巧娟, 张艳琼, 柳长柏. 类转录激活样因子效应物核酸酶技术的原理及应用[J]. 中国生物工程杂志, 2014, 34(7): 76-80.
[14] 马步云, 何婉婉, 周立, 王毅刚. 癌症靶向基因-病毒ZD55-XAF1抗肝癌移植瘤的生长及其安全性研究[J]. 中国生物工程杂志, 2014, 34(1): 15-20.
[15] 凡复, 陈建国, 任宏伟. 帕金森病和阿尔茨海默氏病的基因治疗研究进展[J]. 中国生物工程杂志, 2013, 33(4): 129-135.