Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (6): 48-56    
研究报告     
不同缺氮营养水平对金色奥杜藻生长及光合生理的影响
王璐瑶, 桑敏, 李爱芬, 张成武
暨南大学水生生物研究中心 广州 510632
Effects of Different Nitrogen Nutrition Level on the Growth and Photosynthetic Physiology of Odontella aurita
WANG Lu-yao, SANG Min, LI Ai-fen, ZHANG Cheng-wu
Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
 全文: PDF(1124 KB)   HTML
摘要: 采用了Φ6 cm柱状光生物反应器,在不同氮素营养条件(17.6 mmol/L N、8.8 mmol/L N、5.87 mmol/L N、0 mmol/L N)下通气培养硅藻金色奥杜藻,分析探讨藻细胞的光合生理及生长状况与氮素营养水平的关系。结果表明,不同氮素实验组藻细胞达到最大生长的时间明显差异,与对照组(17.6 mmol/L)相比,氮限制(5.87 mmol/L N、8.8 mmol/L N)在培养的前期对金色奥杜藻的生长具有促进作用,氮饥饿(0 mmol/L)显著抑制藻细胞生长(P<0.05)。氮限制实验组藻细胞总碳水化合物的含量显著增加(P<0.05),而总蛋白含量明显下降(P<0.05)。藻细胞叶绿素a、c及总类胡萝卜素含量与培养液的氮素营养水平呈正相关。藻细胞最大光合放氧速率Pm随氮浓度下降而降低,呼吸速率Rd呈现相反趋势,PSⅡ最大光能转化效率(Fv/Fm)、实际光能转化效率(Yield)、潜在活性(Fv/Fo)以及相对电子传递效率(ETR)均随氮素限制而显著下降(P<0.05),说明藻细胞的表观光合生理状况与氮素营养水平直接相关。
关键词: 金色奥杜藻氮素营养叶绿素荧光参数生长    
Abstract: In order to analysis the effects of different nitrogen nutrition level on the growth and photosynthetic physiology of Odontella aurita, diatoms were cultured under different nitrogen conditions(17.6 mmol/L N, 8.8mmol/L N, 5.87 mmol/L N, 0 mmol/L N), using 6cm columnar light biological reactor. The results showed that the algae of different nitrogen groups reached the maximum growth at different time. In the early of culturing, nitrogen limitation(5.87mmol/L N, 8.8mmol/L N) promoted the growth of Odontella aurita comparing with the control, while nitrogen starvation significantly inhibited the growth of the algae(P<0.05).The carbohydrate content increased significantly (P<0.05) under nitrogen limitation conditon, while total protein content decreased significantly (P<0.05).The content of chlorophyll a, c, total carotenoids of Odontella aurit are positively related with nitrogen nutrition levels of culture medium. The maximum photosynthetic oxygen release rate Pm decreased with nitrogen concentration, the respiratory rate of Rd presented the opposite tendency. The maximum efficiency of light energy conversion of PSⅡ (Fv/Fm), the actual energy conversion efficiency(Yield), potential activity(Fv/Fo) and relative electron transfer efficiency (ETR) decreased significantly with the nitrogen limitation. Illuminating that algal cells of apparent photosynthetic physiological status are directly related to the level of nitrogen nutrition.
Key words: Odontella aurita    Nitrate limitation    Chlorophyll fluorescence parameters    Growth
收稿日期: 2011-12-30 出版日期: 2012-06-25
ZTFLH:  Q945  
基金资助: 国家"863"计划(2009AA06440)、国家"973"计划(2011CB2009001)、国家自然科学基金(31170337、41176105)、广东省教育部产学研结合项目 (2010A090200008)、广东高校优秀青年创新人才培养计划(LYM 11025)资助项目
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王璐瑶
桑敏
李爱芬
张成武

引用本文:

王璐瑶, 桑敏, 李爱芬, 张成武. 不同缺氮营养水平对金色奥杜藻生长及光合生理的影响[J]. 中国生物工程杂志, 2012, 32(6): 48-56.

WANG Lu-yao, SANG Min, LI Ai-fen, ZHANG Cheng-wu. Effects of Different Nitrogen Nutrition Level on the Growth and Photosynthetic Physiology of Odontella aurita. China Biotechnology, 2012, 32(6): 48-56.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I6/48

[1] Beardall J, Young E, Roberts S. Approaches for determining phytoplankton nutrient limitation. Aquat Sci, 2001, 63: 44-69.
[2] Dugdale R C. Nutrient limitation in the sea. Dynamics, identification and significance. Limnol Oceanogr, 1967, 12: 685-955.
[3] Geider R G, Roche J L, Greene R M, et al. Response of the photosynthetic apparatus of Phaeodactylum tricornutum (Bacillariophyceae) to nitrate, phosphate, or iron starvation. J Phycol, 1993, 29: 755-766.
[4] Young E, Beardall J. Rapid ammonium and nitrate-induced perturbations to chl a flurescence in nitrogen-stressed Dunaliella tertiolecata(Chlorophyta). J Phycol, 2003, 39: 332-342.
[5] Ikeda Y, Komura M, Watanabe M, et al. Photosystem I complexes associated with fucoxanthin-chlorophyll-binding proteins from a marine centric diatom, Chaetoceros gracilis. Biochinmica et Biophysica Acta, 2008, 1777(4):351-361.
[6] Berges J A, Falkowski P G. Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation. Limnol Oceanogr, 1998, 43(1): 129-135.
[7] 胡晗华,石岩峻,丛威,等. 不同氮磷水平下中肋骨条藻对营养盐的吸收及光合特性. 应用与环境生物学报,2004, 10 (6): 735-739. Hu H H, Shi Y J, Cong W, et al. Photosynthetic characteristics and nutrient absorptin of Skeletonema costatum at different nitrogen and phosphorus levels. Chin J Appl Environ Biol, 2004, 10 (6): 735-739.
[8] 梁英,金月梅,田传远. 氮磷浓度对绿色巴夫藻生长及叶绿素荧光参数的影响. 海洋湖沼通报,2008, 1: 120-128. Liang Y, Jing Y M, Tian C Y. Effects of different nitrogen and phosphorus concentrations on the growth and chlorophyll fluorescence parameters of Pavloca viridis. Transactions of Oceanology and Limnology, 2008, 1: 120-128.
[9] Toume K, Ishibashi M. 5a, 8a-Epidioxysterol sulfate from a diatom Odontella aurita. Phytochemistry, 2002, 61: 359-360.
[10] Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol, 2004, 65: 635-648.
[11] Brand J P. Simultaneous culture in pilot tanks of the macroalga Chondrus crispus (Gigartinaceae) and the microalga Odontella aurita(Eupodiscaceae) producing EPA. In: Gal Y L, Feuga A M. Marine Microorganisms for Industry, Plenum Press, 1998. 39-47.
[12] Jeffrey S W, Humphrey G F. New spectrophotometric equations for determining chlorophylls a, b, c1and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz, 1975, 167 (19): 1-194.
[13] 李东侠,丛威,蔡昭铃,等. 铁胁迫诱导的赤潮异弯藻细胞生化组成变化.应用生态学报,2003, 14 (7): 1185-1187. Li D X, Cong W, Cai S L, et al. Induction of biochemical composition in Heterosigma akashiwo under Fe stress. Chinese Journal of Applied Ecology, 2003, 14 (7): 1185-1187.
[14] 梁英,冯力霞,田传远,等. 高温胁迫对盐藻和塔胞藻叶绿素荧光动力学的影响. 中国水产科学,2007, 14(6): 961-968. Liang Y, Feng L X, Tian C Y, et al. Effects of high temperature stress on chlorophyll fluorescence kinetics of Dunaliella salina and Pyramimonas sp. Journal of Fishery Sciences of China, 2007, 14(6): 961-968.
[15] 王帅,梁英,冯力霞,等. 重金属胁迫对杜氏盐藻生长及叶绿素荧光特性的影响.海洋科学,2010, 34 (10): 38-48. Wang S, Liang Y, Feng L X, et al. Effects of heavy metal exposure on the growth and chlorophyll fluorescence of Dunaliella salina. Marine Science, 2010, 34 (10): 38-48.
[16] Henley W J. Measurement and interpretation of photosynthetic light response curves in alga in the context of photoinhibition and diel changes. J Phycol, 1993, 29(8): 729-739.
[17] Khozin-Goldberg I,Shrestha P,Cohen Z.Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa.J Biochem Biophy Acta,2005,1738(1):63-71.
[18] Dubios M, Gillies K A, Hamilton J K, et al. Colorimetric method for the determination of sugars and related subtacnces. Anal Chem, 1956, 28: 350-356.
[19] Guerrini F, Cangini M, Boni L. Metabolic responses of the diatiom Achnanthes brevipes (Bacillariophyceae) to nutrient limitation. J Phycol, 2000, 36: 882-890.
[20] 尹翠玲,梁英,冯力霞,等. 氮浓度对盐生杜氏藻和纤细角毛藻叶绿素荧光特性及生长的影响. 海洋湖沼通报,2007, 1: 101-109. Ying C L, Liang Y, Feng L X, et al. Effects of different nitrogen concentrations on the chlorophyll fluorescence and growth of Dunaliella salina and Chaetoceros gracilis. Transactions of Oceanology and Limnology, 2007, 1: 101-109.
[21] Victoria H W, Randor R, Robert E J, et al. Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell, 2010, 9(8): 1251-1261.
[22] Young E B, Beardall J. Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen and recovery cycle. J Phycol, 2000, 39: 897-905.
[23] 梁英,冯力霞,田传远,等. 盐胁迫对塔胞藻生长及叶绿素荧光动力学的影响. 中国海洋大学学报,2006, 36 (5): 726-732. Liang Y, Feng L X, Tian C Y, et al. Effects of salt stress on the growth and chlorophyll fluorescence of Pyramidomonas sp. Periodical of Ocean University of China, 2006, 36 (5): 726-732.
[24] 周蕴薇,刘艳萍,戴思兰. 用叶绿素荧光分析技术鉴定植物抗寒性的剖析. 植物生理学通讯,2006, 42(5): 945-950. Zhou Y W, Liu Y P, Dai S L. Identification of cold resistant plants by chlorophyll fluorescence analysis technique. Plant Physiology Communications, 2006, 42(5): 945-950.
[25] 张丽霞,朱涛,张雅婷,等. 不同光强对铜绿微囊藻生长及叶绿素荧光动力学的影响. 信阳师范学报,2009, 22 (1): 63-65. Zhang L X, Zhu T, Zhang Y T, et al. The growth and chlorophyll fluorescence dynamics change of Microcystic aerugiuosa treated with different light. Journal of Xinyang Normal University, 2009, 22 (1): 63-65.
[26] Dortch Q. Effect of growth conditions on the accumulation of internal nitrate,ammonium amino acids and protein in three marine diatoms. J Exp Mar Bio1 Eco1, 1982, 61: 243-254.
[27] Fabregas J, Abalde J, Herrero C. Biochemical conposition and grewth of the marine microalgae Dunaliella tertiolecta(Butcher)withdifferent ammonium nitrogen concentrations as chloride, sulphate, nitrate and carbonate. Aquaculture, 1989, 83: 289-304.
[28] Fabregas J, Herrero C, Cabezas B, et a1. Biomass production and biochemical composition in mas cultures of the marine microalga Isochrysis galbana Parke at varying nutrient concentrations. Aquaculture, 1986, 53: 101-113.
[29] Suen Y, Hubbard J S, Holzer G, et a1. Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. Phyco1, 1987, 23:289-296.
[30] 石娟,潘克厚. 不同培养条件对微藻总脂含量和脂肪酸组成的影响. 海洋水产研究,2004, 25(6): 79-85. Shi J, Pan K H. Effects of different culture conditions and growth phases on lipid of microalga. Marine Fisheries Research, 2004, 25(6): 79-85.
[31] 欧阳峥嵘,温小斌,耿亚红,等. 光照强度、温度、pH、盐度对小球藻(Chbrella)光合作用的影响. 武汉植物学研究,2010, 28 (1): 49-55. OuYang Z R, Wen X B, Geng Y H, et al. The effects of light intensities, temperatures, pH and salinities on photosynthesis of Chlorella. Journal of Wuhan Botanical Research, 2010, 28 (1): 49-55.
[32] Silva A F, Ourenco S O, Chaloub R M. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp. (Cryptophyceae). Aquat Bot, 2009, 91: 291-297.
[33] 石岩骏. 赤潮藻对营养盐的吸收及生长和相关特性的研究. 北京:北京化工大学博士研究生学位论文, 2004. Shi Y J. The nutrient availability,growth and related characteristics of red tide algae. Beijing University of Chemical Doctor Graduate Student Degree Thesis, 2004.
[34] Plumley F G, Schmidt G W. Nitrogen-dependent regulation of photosynthetic gene expression. Proc Natl Acad Sci USA, 1989, 86(8): 2678-2682.
[35] Billi D, Caiola M G. Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). New Phytol, 1996, 133: 563-571.
[1] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[2] 赵久梅,王哲,李学英. 调控软骨形成的信号通路及相关因子在骨髓间充质干细胞骨向分化中的作用*[J]. 中国生物工程杂志, 2021, 41(10): 62-72.
[3] 石鹏程, 纪晓俊. 酵母系统表达人表皮生长因子研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 72-79.
[4] 孟晓琳,庞锡明,王洁. 农杆菌介导海洋草酸青霉转化体系及聚酮合酶Pks生物学功能*[J]. 中国生物工程杂志, 2020, 40(9): 11-17.
[5] 杨丹,田海山,李校堃. 成纤维细胞生长因子5的研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 117-124.
[6] 李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.
[7] 宋奕,张翠云,李奕,张素素,潘舜,陶云云,许璐摇,何华成,吴疆. 利用静电纺丝技术制备聚己内酯-胶原复合包载碱性成纤维细胞生长因子手术缝纫线及其缓释性能的研究 *[J]. 中国生物工程杂志, 2019, 39(1): 55-62.
[8] 李佩忆,周于聪,李雅乾,陈捷. 深绿木霉中碳代谢抑制因子CRE1功能特性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 17-25.
[9] 高鑫,韦攀健,闫卓红,易玲,王小珏,杨斌,张洪涛. 一株针对人EGFR的单链抗体克隆与哺乳细胞表达 *[J]. 中国生物工程杂志, 2018, 38(5): 73-78.
[10] 段思腾,李光然,马义勇,邱裕佳,李宇,王伟. 负载NGF的可注射壳聚糖透明质酸水凝胶材料理化性能及生物相容性研究[J]. 中国生物工程杂志, 2018, 38(4): 70-77.
[11] 刘亚楠,路莉,王学习,吴勇杰,刘霞. 脂肪干细胞对神经创伤修复的研究进展*[J]. 中国生物工程杂志, 2018, 38(3): 70-75.
[12] 郑婕, 姜潮, 李校堃, 田海山. 成纤维细胞生长因子6(FGF6(的研究进展[J]. 中国生物工程杂志, 2017, 37(4): 110-114.
[13] 陈坤, 曹雪玮, 张琴, 赵健, 王富军. EGF类生长因子来源的新型靶向肽在抗肿瘤药物蛋白中的应用[J]. 中国生物工程杂志, 2017, 37(3): 1-9.
[14] 孙鉴锋, 王建新. 一种基于E-index方法区分复杂性状的分析工具[J]. 中国生物工程杂志, 2017, 37(2): 93-100.
[15] 王利群, 鲁洪中, 储炬, 王永红. 不同培养方式下dCO2对黑曲霉发酵产糖化酶的影响[J]. 中国生物工程杂志, 2017, 37(1): 27-37.