Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (6): 120-124    
综述     
提高木霉逆境适应性与生物防治效果的基因工程研究进展
陈勇, 朱廷恒, 汪琨, 崔志峰
浙江工业大学生物与环境学院 杭州 310014
Advances in Engineering of Trichoderma for Improvement of Adaption to Adverse Environment and Efficiency of Biological Control Against Plant Pathogen
CHEN Yong, ZHU Ting-heng, WANG Kun, CUI Zhi-feng
College of Biological and Environmental Engineering, Zhejang University of Technology, Hangzhou 310014, China
 全文: PDF(369 KB)   HTML
摘要: 木霉生存范围广、生长繁殖迅速,对其他真菌有一定的拮抗能力,并能促进植物生长、诱导植物对病原菌产生抗性,是迄今开发最成功的植物病害生防真菌。目前,运用基因工程的方法对木霉进行遗传改良,提高它对环境的适应性与对致病菌的防治能力,已经取得了很大的进展,就近年来采用基因工程的方法对木霉进行改良的研究进行综述。
关键词: 木霉生物防治基因工程    
Abstract: Trichoderma can survive in various environments and grow rapidly, it also can inhibit many phytopathogens, promote plant growth and induce the resistance of plants to the disease. Trichoderma has been the most successful biocontrol agent in plant disease control. Great efforts have been taken to improve their survival abilities and antifungal activities by genetic engineering. The recent achievements in the study of genetic engineering for Trichoderma were discussed.
Key words: Trichoderma    Biological control    Genetic engineering
收稿日期: 2012-01-16 出版日期: 2012-06-25
ZTFLH:  Q789  
基金资助: 国家自然科学基金(30871613)、浙江省重中之重开放基金(2011009)资助项目。
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈勇
朱廷恒
汪琨
崔志峰

引用本文:

陈勇, 朱廷恒, 汪琨, 崔志峰. 提高木霉逆境适应性与生物防治效果的基因工程研究进展[J]. 中国生物工程杂志, 2012, 32(6): 120-124.

CHEN Yong, ZHU Ting-heng, WANG Kun, CUI Zhi-feng. Advances in Engineering of Trichoderma for Improvement of Adaption to Adverse Environment and Efficiency of Biological Control Against Plant Pathogen. China Biotechnology, 2012, 32(6): 120-124.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I6/120

[1] Schuster ASchmoll M. Biology and biotechnology of Trichoderma. Applied Microbiology and Biotechnology, 2010,87(3):787-799.
[2] Benítez T, Rincón A M, Limón M C, et al. Biocontrol mechanisms of Trichoderma strains. International Microbiology, 2004,7(4):249-260.
[3] Monte E. Understanding Trichoderma: between biotechnology and microbial ecology. International Microbiology, 2010,4(1):1-4.
[4] Mathews L S, Hammer R E, Behringer R R, et al. Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology, 1988,123(6):2827.
[5] Vinale F, Sivasithamparam K, Ghisalberti E L, et al. Trichoderma-plant-pathogen interactions. Soil Biology and Biochemistry, 2008,40(1):1-10.
[6] Nagayama K, Watanabe S, Kumakura K, et al. Development and commercialization of Trichoderma asperellum SKT-1 (Ecohope R), a microbial pesticide. Journal of Pesticide Science, 2007,32(2):141-142.
[7] Kredics L, Antal Z, Manczinger L, et al. Influence of environmental parameters on Trichoderma strains with biocontrol potential. Food Technology and Biotechnology, 2003,41(1):37-42.
[8] Delgado-Jarana J, Sousa S, Gonzalez F, et al. ThHog1 controls the hyperosmotic stress response in Trichoderma harzianum. Microbiology-Sgm, 2006,152:1687-1700.
[9] Moran-Diez M E, Cardoza R E, Gutierrez S, et al. TvDim1 of Trichoderma virens is involved in redox-processes and confers resistance to oxidative stresses. Current Genetics, 2010,56(1):63-73.
[10] Yang L M, Yang Q, Sun K N, et al. Agrobacterium tumefaciens-mediated transformation of SOD gene to Trichoderma harzianum. World Journal of Microbiology & Biotechnology, 2010,26(2):353-358.
[11] Montero-Barrientos M, Cardoza R E, Gutierrez S, et al. The heterologous overexpression of hsp23, a small heat-shock protein gene from Trichoderma virens, confers thermotolerance to T harzianum. Current Genetics, 2007,52(1):45-53.
[12] Montero-Barrientos M, Hermosa R, Nicolas C, et al. Overexpression of a Trichoderma HSP70 gene increases fungal resistance to heat and other abiotic stresses. Fungal Genetics and Biology, 2008,45(11):1506-1513.
[13] Raspanti E, Cacciola S O, Gotor C, et al. Implications of cysteine metabolism in the heavy metal response in Trichoderma harzianum and in three Fusarium species. Chemosphere, 2009,76(1):48-54.
[14] De Freitas Lima A, Ferreira De Moura G, Barbosa De Lima M A, et al. Role of the morphology and polyphosphate in Trichoderma harzianum related to cadmium removal. Molecules, 2011,16(3):2486-2500.
[15] 沈薇, 杨树林, 李校堃, 等. 木霉 (Trichoderma sp.) HR-1 活细胞吸附 Pb (Ⅱ) 的机理. 中国环境科学, 2006. 26(1):101-105. Shen W, Yang S L., Li X K., et al. The mechanism of Pb(II) sorption by living cell of Trichoderma sp.HR-1. China Environmental Science, 2006,26(1):101-106.
[16] Errasquin E L,Vazquez C. Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere, 2003,50(1):137-143.
[17] Fu K H, Liu L X, Fan L L, et al. Accumulation of copper in Trichoderma reesei transformants, constructed with the modified Agrobacterium tumefaciens-mediated transformation technique. Biotechnology Letters, 2010,32(12):1815-1820.
[18] Watanabe S, Kato H, Kumakura K, et al. Properties and biological control activities of aerial and submerged spores in Trichoderma asperellum SKT-1. Journal of Pesticide Science, 2006,31(4):375-379.
[19] 黄亚丽, 蒋细良, 朱昌雄, 等. 木霉菌厚垣孢子形成相关基因的克隆及功能研究. 植物保护, 2007,33(5):98-99. Huang Y L, Jiang X L, Zhu C X, et al. Cloning and functional analysis of the genes related to development of chlamydospores in Trichoderma spp. Plant Protection, 2007,33(5):98-99.
[20] 袁素贤, 阚国仕, 陈红漫. 抗逆生防木霉筛选及其相关因子诱导. 安徽农业科学, 2007,35(16):4716-4718. Yuan S X, Kan G N,Chen H M. Screen of stress tolerance biocontrol trichoderma strain and inducement of its relative factors. Journal of Anhui Agri Sci, 2007,35(16):4716-4718.
[21] Harman G E, Howell C R, Viterbo A, et al. Trichoderma species-Opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2004,2(1):43-56.
[22] Elad Y. Biocontrol of foliar pathogens: mechanisms and application. Communications in Agricultural and Applied Biological Sciences, 2003,68(4 Pt A):17.
[23] Vinale F, Ghisalberti E L, Sivasithamparam K, et al. Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Letters in Applied Microbiology, 2009,48(6):705-711.
[24] Velazquez-Robledo R, Contreras-Cornejo H A, Macias-Rodriguez L, et al. Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Molecular Plant-Microbe Interactions, 2011,24(12):1459-1471.
[25] Prabavathy V R, Mathivanan N, Sagadevan E, et al. Self-fusion of protoplasts enhances chitinase production and biocontrol activity in Trichoderma harzianum. Bioresource Technology, 2006,97(18):2330-2334.
[26] 于新, 田淑慧, 徐文兴, 等. 木霉菌生防作用的生化机制研究进展. 中山大学学报(自然科学版), 2005,44(2):86-90. Yu X, Tian S H, Xu W X, et al. Progress in the biochemical mechanisms of biocontrol effect research with Trichoderma. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005,44(2):86-90.
[27] Viterbo A, Haran S, Friesem D, et al. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiology Letters, 2001,200(2):169-174.
[28] Deng S, Lorito M, Penttil M, et al. Overexpression of an endochitinase gene (ThEn-42) in Trichoderma atroviride for increased production of antifungal enzymes and enhanced antagonist action against pathogenic fungi. Applied Biochemistry and Biotechnology, 2007,142(1):81-94.
[29] Limon M C, Pintor-Toro J A,Benitez T. Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33kDa chitinase. Phytopathology, 1999,89(3):254-261.
[30] Limon M C, Chacon M R, Mejias R, et al. Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Applied Microbiology and Biotechnology, 2004,64(5):675-685.
[31] Rey M, Delgado-Jarana J,Benitez T. Improved antifungal activity of a mutant of Trichoderma harzianum CECT 2413 which produces more extracellular proteins. Applied Microbiology and Biotechnology, 2001,55(5):604-608.
[32] Djonovic S, Vittone G, Mendoza-Herrera A, et al. Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing beta-1,3- and beta-1,6-glucanase genes. Molecular Plant Pathology, 2007,8(4):469-480.
[33] Migheli Q, Gonzalez-Candelas L, Dealessi L, et al. Transformants of Trichoderma longibrachiatum overexpressing the beta-1,4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology, 1998,88(7):673-677.
[34] Flores A, Chet I,Herreraestrella A. Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Current Genetics, 1997,31(1):30-37.
[35] Yan L, Qian Y. Cloning and heterologous expression of SS10, a subtilisin-like protease displaying antifungal activity from Trichoderma harzianum. FEMS Microbiology Letters, 2009,290(1):54-61.
[36] Carpenter M A, Ridgway H J, Stringer A M, et al. Characterization of a Trichoderma hamatum monooxygenase gene involved in antagonistic activity against fungal plant pathogens. Current Genetics, 2008,53(4):193-205.
[37] Montero-Barrientos M, Hermosa R, Cardoza R E, et al. Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Applied and Environmental Microbiology, 2011,77(9):3009-3016.
[38] Zembek P, Perlinska-Lenart U, Brunner K, et al. Elevated activity of dolichyl phosphate mannose synthase enhances biocontrol abilities of Trichoderma atroviride. Mol Plant Microbe Interact, 2011:110719115435002-110719115435002.
[39] Szekeres A, Leitgeb B, Kredics L, et al. Peptaibols and related peptaibiotics of Trichoderma. Acta Microbiologica et Immunologica Hungarica, 2005,52(2):137-168.
[40] Reino J L, Guerrero R F, Hernandez-Galan R, et al. Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochemistry Reviews, 2008,7(1):89-123.
[41] Vinale F, Sivasithamparam K, Ghisalberti E L, et al. Trichoderma-plant-pathogen interactions. Soil Biology & Biochemistry, 2008,40(1):1-10.
[42] Tijerino A, Cardoza R E, Moraga J, et al. Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genetics and Biology, 2011,48(3):285-296.
[43] Druzhinina I S, Seidl-Seiboth V, Herrera-Estrella A, et al. Trichoderma: the genomics of opportunistic success. Nature Reviews Microbiology, 2011,9(10): 749-759.
[1] 孙瑶,乔梦伟,刘诗宇,宫殿良,宋金柱. 乳杆菌对致病假单胞菌的抑制作用研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 103-109.
[2] 徐晓, 程驰, 袁凯, 薛闯. 里氏木霉产纤维素酶研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 52-61.
[3] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[4] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[5] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.
[6] 马淑霞,张玲,闫晋飞,游松. 裂壶藻脂肪酸合酶途径合成多不饱和脂肪酸的研究 *[J]. 中国生物工程杂志, 2018, 38(9): 27-34.
[7] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[8] 李佩忆,周于聪,李雅乾,陈捷. 深绿木霉中碳代谢抑制因子CRE1功能特性研究 *[J]. 中国生物工程杂志, 2018, 38(6): 17-25.
[9] 陶宇,李高建,舒建洪,吴月红,杨芳,何玉龙. 猪支原体肺炎基因工程疫苗的研究进展 *[J]. 中国生物工程杂志, 2018, 38(2): 95-101.
[10] 石红璆,查代明,张炳火,李汉全. 全细胞脂肪酶研究进展 *[J]. 中国生物工程杂志, 2018, 38(11): 51-58.
[11] 焦思明,程功,张毓宸,冯翠,任立世,李建军,杜昱光. 里氏木霉几丁质酶表达及其水解产物组成与结构分析 *[J]. 中国生物工程杂志, 2018, 38(10): 30-37.
[12] 吴锁伟,万向元. 利用生物技术创建主要作物雄性不育杂交育种和制种的技术体系[J]. 中国生物工程杂志, 2018, 38(1): 78-87.
[13] 郜娇娇, 杨树林. 基因工程技术优化透明质酸生产的研究进展[J]. 中国生物工程杂志, 2017, 37(8): 72-77.
[14] 尹舒贤, 赵月华, 刘超, 吕占军, 王秀芳. 人源Alu RNA工程菌的构建和表达[J]. 中国生物工程杂志, 2017, 37(7): 88-96.
[15] 王得华, 马义, 韩磊, 肖兴, 李艳伟, 党诗莹, 范志勇, 文涛, 洪岸. 新型基因重组PACAP衍生物MPL-2的制备及其抗2型糖尿病作用研究[J]. 中国生物工程杂志, 2017, 37(5): 59-65.