亲和标签在重组蛋白表达与纯化中的应用

陈爱春, 彭伟, 汪生鹏

中国生物工程杂志 ›› 2012, Vol. 32 ›› Issue (12) : 93-103.

PDF(504 KB)
PDF(504 KB)
中国生物工程杂志 ›› 2012, Vol. 32 ›› Issue (12) : 93-103.
综述

亲和标签在重组蛋白表达与纯化中的应用

  • 陈爱春1, 彭伟1, 汪生鹏1,2
作者信息 +

Progress in the Application of Affinity Tags for the Expression and Purification of Recombinant Proteins

  • CHEN Ai-chun1, PENG Wei1, WANG Sheng-peng1,2
Author information +
文章历史 +

摘要

亲和标签融合技术为重组蛋白的纯化提供了一种简单方便的纯化工具,具有结合特异性高、洗脱条件温和、通用性强、纯化倍数高等显著优点。概述了亲和标签对融合蛋白表达的影响,可以提高重组蛋白的产量,增强重组蛋白的可溶性,促进重组蛋白的正确折叠;回顾了在重组蛋白表达与纯化中广泛使用的几种亲和标签,以及近年来相继出现的几种比较新颖的纯化标签;介绍了亲和标签的组合使用策略,His6-MBP组合标签集合了两个标签的优点,串联亲和纯化可以纯化获得生理条件下的蛋白质复合体;展望了亲和标签未来的发展趋势,认为仍需继续开发性能更加优越、纯化效果更加显著的纯化标签系统。

Abstract

Affinity-tag fusion technology provides a simple and convenient tool for the purification of arbitrary recombinant proteins through genetic engineering, which is obviously characterized with high binding specificity, mild elution conditions employed, high generality and hundred- or even thousand-fold purification. The affinity tags widely used for the expression and purification of recombinant proteins is discussed, together with several novel purification tags in recent years. The positive effects of affinity tags on the fusion proteins are presented, which can increase the yield, enhance the solubility and promote the folding of recombinant proteins. An overview of the tag design that combines different affinity tags is introduced, which His6-MBP combinatorial tag has advantages of the two integral parts and tandem affinity purification can purify protein complexes under physiological conditions. Finally, future outlook is also discussed briefly, and purification tag systems that are characterized with more superior performance and more notable purification efficiency are still needed to be developed.

关键词

亲和标签 / 重组蛋白 / 融合表达 / 亲和纯化

Key words

Affinity tags / Recombinant proteins / Fusion expression / Affinity purification

引用本文

导出引用
陈爱春, 彭伟, 汪生鹏. 亲和标签在重组蛋白表达与纯化中的应用[J]. 中国生物工程杂志, 2012, 32(12): 93-103
CHEN Ai-chun, PENG Wei, WANG Sheng-peng. Progress in the Application of Affinity Tags for the Expression and Purification of Recombinant Proteins[J]. China Biotechnology, 2012, 32(12): 93-103
中图分类号: Q819   

参考文献

[1] Lichty J J, Malecki J L, Agnew H D, et al. Comparison of affinity tags for protein purification. Protein Expr Purif, 2005, 41(1): 98-105.
[2] Singh P K, Chan P F, Hibbs M J, et al. High-yield production and characterization of biologically active GST-tagged human topoisomerase IIα protein in insect cells for the development of a high-throughput assay. Protein Expr Purif, 2011, 76(2): 165-172.
[3] Cho H J, Lee Y, Chang R S, et al. Maltose binding protein facilitates high-level expression and functional purification of the chemokines RANTES and SDF-1α from Escherichia coli. Protein Expr Purif, 2008, 60(1): 37-45.
[4] Catanzariti A-M, Soboleva T A, Jans D A, et al. An efficient system for high-level expression and easy purification of authentic recombinant protein. Protein Sci, 2004, 13(5): 1331-1339.
[5] Bruinzeel W, Masure S. Recombinant expression, purification and dimerization of the neurotrophic growth factor Artemin for in vitro and in vivo use. Protein Expr Purif, 2012, 81(1): 25-32.
[6] Varshavsky A. The N-end rule pathway of protein degradation. Genes Cells, 1997, 2(1): 13-28.
[7] Hayes C S, Bose B, Sauer R T. Proline residues at the C terminus of nascent chains induce SsrA tagging during translation termination. J Biol Chem, 2002, 277(37): 33825-33832.
[8] De Macro V, Stier G, Blandin S, et al. The solubility and stability of recombinant proteins are increased by their fusion to NusA. Biochem Biophys Res Commun, 2004, 322(3): 766-771.
[9] Hammarstrom M, Hellgren N, Van Den Berg S, et al. Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci, 2002, 11(2): 313-321.
[10] Chayen N E. Turning protein crystallization from an art into a science. Curr Opin Struct Biol, 2004, 14(5): 577-583.
[11] Niiranen L, Espelid S, Karlsen C R, et al. Comparative expression study to increase the solubility of cold adapted Vibrio proteins in Escherichia coli. Protein Expr Purif, 2007, 52(1): 210-218.
[12] Maeng B H, Nam D H, Kim Y H. Coexpression of molecular chaperones to enhance functional expression of anti-BNP scFv in the cytoplasm of Escherichia coli for the detection of B-type natriuretic peptide. World J Microbiol Biotechnol, 2011, 27(6): 1391-1398.
[13] Kataeva I, Chang J, Xu H, et al. Improving solubility of Shewanella oneidensis MR-1 and Clostridium thermocellum JW-20 proteins expressed into Escherichia coli. J Proteome Res, 2005, 4(6): 1942-1951.
[14] Turner P, Holst O, Karlsson E N. Optimized expression of soluble cyclomaltodextrinase of thermophilic origin in Escherichia coli by using a soluble fusion-tag and by tuning of inducer concentration. Protein Expr Purif, 2005, 39(1): 54-60.
[15] Gnidehou S, Gerbaud P, Ducarme G, et al. Expression in Escherichia coli and purification of human recombinant connexin-43, a four-pass transmembrane protein. Protein Expr Purif, 2011, 78(2): 174-180.
[16] Guo W H, Cao L, Jia Z J, et al. High level soluble production of functional ribonuclease inhibitor in Escherichia coli by fusing it to soluble partners. Protein Expr Purif, 2011, 77(2): 185-192.
[17] Hernandez-Cuebas L M, White M M. Expression of a biologically-active conotoxin PrIIIE in Escherichia coli. Protein Expr Purif, 2012, 82(1): 6-10.
[18] Sun W, Xie J, Lin H, et al. A combined strategy improves the solubility of aggregation-prone single-chain variable fragment antibodies. Protein Expr Purif, 2012, 83(1): 21-29.
[19] Nallamsetty S, Waugh D S. Mutations that alter the equilibrium between open and closed conformations of Escherichia coli maltose-binding protein impede its ability to enhance the solubility of passenger proteins. Biochem Biophys Res Commun, 2007, 364(3): 639-644.
[20] Fox J D, Kapust R B, Waugh D S. Single amino acid substitutions on the surface of Escherichia coli maltose-binding protein can have a profound impact on the solubility of fusion proteins. Protein Sci, 2001, 10(3): 622-630.
[21] Kapust R B, Waugh D S. Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci, 1999, 8(8): 1668-1674.
[22] Nallamsetty S, Waugh D S. Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion parterners. Protein Expr Purif, 2006, 45(1): 175-182.
[23] Jurado P, de Lorenzo V, Fernandez L A. Thioredoxin fusions increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of thioredoxin. J Mol Biol, 2006, 357(1): 49-61.
[24] Evan G I, Lewis G K, Ramsay G, et al. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol, 1985, 5(12): 3610-3616.
[25] Gaj T, Meyer S C, Ghosh I. The AviD-tag, a NeutrAvidin/avidin specific peptide affinity tag for the immobilization and purification of recombinant proteins. Protein Expr Purif, 2007, 56(1): 54-61.
[26] Karpeisky M Y, Senchenko V N, Dianova M V, et al. Formation and properties of S-protein complex with S-peptide-containing fusion protein. FEBS Lett, 1994, 339(3): 209-212.
[27] Chaga G, Bochkariov D E, Jokhadze G G, et al. Natural poly-histidine affinity tag for purification of recombinant proteins on cobalt(II)-carboxymethylaspartate crosslinked agarose. J Chromatogr A, 1999, 864(2): 247-256.
[28] Keefe A D, Wilson D S, Seelig B, et al. One-step purification of recombinant proteins using a nanomolar-affinity streptavidin-binding peptide, the SBP-tag. Protein Expr Purif, 2001, 23(3): 440-446.
[29] Ikeda T, Ninomiya K, Hirota R, et al. Single-step affinity purification of recombinant proteins using the silica-binding Si-tag as a fusion partner. Protein Expr Purif, 2010, 71(1): 91-95.
[30] Ohana R F, Hurst R, Vidugiriene J, et al. HaloTag-based purification of functional human kinases from mammalian cells. Protein Expr Purif, 2011, 76(2): 154-164.
[31] Vorackova I, Suchanova S, Ulbrich P, et al. Purification of proteins containing zinc finger domains using immobilized metal ion affinity chromatography. Protein Expr Purif, 2011, 79(1): 88-95.
[32] Zakalskiy A E, Zakalska O M, Rzhepetskyy Y A, et al. Overexpression of (His)6-tagged human arginase I in Saccharomyces cerevisiae and enzyme purification using metal affinity chromatography. Protein Expr Purif, 2012, 81(1): 63-68.
[33] Dojima T, Nishina T, Kato T, et al. Comparison of the N-linked glycosylation of human β1,3-N-acetylglucosaminyltransferase2 expressed in insect cells and silkworm larvae. J Biotechnol, 2009, 143(1): 27-33.
[34] Ralph E C, Xiang L K, Cashman J R, et al. His-tag truncated butyrylcholinesterase as a useful construct for in vitro characterization of wild-type and variant butyrylcholinesterases. Protein Expr Purif, 2011, 80(1): 22-27.
[35] Chaga G S. Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods, 2001, 49(1-3): 313-334.
[36] Gaberc-Porekar V, Menart V. Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods, 2001, 49(1-3): 335-360.
[37] Westra D F, Welling G W, Koedijk D G, et al. Immobilized metal-ion affinity chromatography purification of histidine-tagged recombinant proteins: a wash step with a low concentration of EDTA. J Chromatogr B Biomed Sci Appl, 2001, 760(1): 129-136.
[38] Wang W M, Lee A Y, Chiang C M. One-step affinity tag purification of full-length recombinant human AP-1 complexes from bacterial inclusion bodies using a polycistronic expression system. Protein Expr Purif, 2008, 59(1): 144-152.
[39] Papakonstantinou T, Harris S J, Fredericks D, et al. Synthesis, Purification and bioactivity of recombinant human activin A expressed in the yeast Pichia pastoris. Protein Expr Purif, 2009, 64(2): 131-138.
[40] Ogata M, Nakajima M, Kato T, et al. Synthesis of sialoglycopolypeptide for potentially blocking influenza virus infection using a rat α2,6-sialyltransferase expressed in BmNPV bacmid-injected silkworm larvae. BMC Biotechnol, 2009, 9(1): 54.
[41] Papakostas T D, Pieretti-Vanmarcke R, Nicolaou F, et al. Development of an efficiently cleaved, bioactive, highly pure FLAG-tagged recombinant human Mullerian Inhibiting Substance. Protein Expr Purif, 2010, 70(1): 32-38.
[42] Slootstra J W, Kuperus D, Pluckthun A, et al. Identification of new tag sequences with differential and selective recognition properties for the anti-FLAG monoclonal antibodies M1, M2 and M5. Mol Divers, 1996, 2(3): 156-164.
[43] Futatsumori-Sugai M, Abe R, Watanabe M, et al. Utilization of Arg-elution method for FLAG-tag based chromatography. Protein Expr Purif, 2009, 67(2): 148-155.
[44] Ueda M, Manabe Y, Mukai M. The high performance of 3×FLAG for target purification of a bioactive metabolite: a tag combined with a highly effective linker structure. Bioorg Med Chem Lett, 2011, 21(5): 1359-1362.
[45] Krishnan S, Collazo E, Ortiz-Tello P A, et al. Purification and assay protocols for obtaining highly active Jumonji C demethylases. Anal Biochem, 2012, 420(1): 48-53.
[46] Pradeau-Aubreton K, Ruff M, Garnier J M. Vectors for recombinational cloning and gene expression in mammalian cells using modified vaccinia virus Ankara. Anal Biochem, 2010, 404(1): 103-105.
[47] Green N M. Avidin and streptavidin. Methods Enzymol, 1990, 184: 51-67.
[48] Schmidt T G M, Skerra A. The random peptide library-assisted engineering of a C-terminal affinity peptide, useful for the detection and purification of a functional Ig Fv fragment. Protein Eng, 1993, 6(1): 109-122.
[49] Schmidt T G M, Koepke J, Frank R, et al. Molecular interaction between the Strep-tag affinity peptide and its cognate target, streptavidin. J Mol Biol, 1996, 255(5): 753-766.
[50] Busby M, Stadler L K J, Ferrigno P K, et al. Optimisation of a multivalent Strep tag for protein detection. Biophys Chem, 2010, 152(1-3): 170-177.
[51] Klenotic P A, Page R C, Misra S, et al. Expression, purification and structural characterization of functionally replete thrombospondin-1 type 1 repeats in a bacterial expression system. Protein Expr Purif, 2011, 80(2): 253-259.
[52] Suzuki J, Fukuda M, Kawata S, et al. A rapid protein expression and purification system using Chinese hamster ovary cells expressing retrovirus receptor. J Biotechnol, 2006, 126(4): 463-474.
[53] Kaplan W, Husler P, Klump H, et al. Conformational stability of pGEX-expressed Schitosoma japonicum glutathione S-transferase: a detoxification enzyme and fusion-protein affinity tag. Protein Sci, 1997, 6(2): 399-406.
[54] Hu J, Qin H J, Gao F P, et al. A systematic assessment of mature MBP in membrane protein production: overexpression, membrane targeting and purification. Protein Expr Purif, 2011, 80(1): 34-40.
[55] Marvin J S, Hellinga H W. Manipulation of ligand binding affinity by exploitation of conformational coupling. Nat Struct Biol, 2001, 8(9): 795-798.
[56] Telmer P G, Shilton B H. Insights into the conformational equilibria of maltose-binding protein by analysis of high affinity mutants. J Biol Chem, 2003, 278(36): 34555-34567.
[57] Ruan B, Fisher K E, Alexander P A, et al. Engineering subtilisin into a fluoride-triggered processing protease useful for one-step protein purification. Biochemistry, 2004, 43(46): 14539-14546.
[58] Huang L, Mao X, Abdulaev N G, et al. One-step purification of a functional, constitutively activated form of visual arrestin. Protein Expr Purif, 2012, 82(1): 55-60.
[59] Motta M, Tatti M, Martinelli S, et al. Efficient one-step chromatographic purification and functional characterization of recombinant human Saposin C. Peotein Expr Purif, 2011, 78(2): 209-215.
[60] Perler F B, Davis E O, Dean G E, et al. Protein splicing elements: inteins and exteins - a definition of terms and recommended nomenclature. Nucleic Acids Res, 1994, 22(7): 1125-1127.
[61] Southworth M W, Amaya K, Evans T C, et al. Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. BioTechniques, 1999, 27(1): 110-120.
[62] Chen T, Li L J, Hao H L, et al. Preparation of monomeric B27 Lys destripeptide insulin by intein mediated expression in Escherichia coli. Protein Expr Purif, 2011, 80(1): 152-156.
[63] Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev, 1990, 54(4): 450-472.
[64] Stuart E S, Tehrani A, Valentin H E, et al. Protein organization on the PHA inclusion cytoplasmic boundary. J Biotechnol, 1998, 64(2-3): 137-144.
[65] Banki M R, Gerngross T U, Wood D W. Novel and economical purification of recombinant proteins: intein-mediate protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci, 2005, 14(6): 1387-1395.
[66] Banki M R, Feng L, Wood D W. Simple bioseparations using self-cleaving elastin-like polypeptide tags. Nat Methods, 2005, 2(9): 659-661.
[67] Meyer D E, Chilkoti A. Quantification of the effects of chain length and concentration on the thermal behavior of elastin-like polypeptides. Biomacromolecules, 2004, 5(3): 846-851.
[68] Wu W Y, Mee C, Califano F, et al. Recombinant protein purification by self-cleaving aggregation tag. Nat Protoc, 2006, 1(5): 2257-2262.
[69] Nallamsetty S, Waugh D. A generic protocol for the expression and purification of recombinant proteins in Escherichia coli using a combinatorial His6-maltose binding protein fusion tag. Nat Protoc, 2007, 2(2): 383-391.
[70] Rigaut G, Shevchenko A, Rutz B, et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 1999, 17(10): 1030-1032.
[71] Puig O, Caspary F, Rigaut G, et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods, 2001, 24(3): 218-229.
[72] Li Y F. Commonly used tag combinations for tandem affinity purification. Biotechnol Appl Biochem, 2010, 55(2): 77-83.
[73] Gavin A C, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415(6868): 141-147.
[74] Major M B, Camp N D, Berndt J D, et al. Wilms tumor suppressor WTX negatively regulates WNT/β-catenin signaling. Science, 2007, 316(5827): 1043-1046.
[75] Van Leene J, Stals H, Eeckhout D, et al. A tandem affinity purification-based technology platform to study the cell cycle interactome in Arabidopsis thaliana. Mol Cell Proteomics, 2007, 6(7): 1226-1238.
[76] Forler D, Kocher T, Rode M, et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat Biotechnol, 2003, 21(1): 89-92.
[77] Pelletier D A, Hurst G B, Foote L J, et al. A general system for studying protein-protein interactions in gram-negative bacteria. J Proteome Res, 2008, 7(8): 3319-3328.

PDF(504 KB)

1526

Accesses

0

Citation

Detail

段落导航
相关文章

/