Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (11): 23-28    
研究报告     
抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究
刘启刚1,2, 代云见2, 张勇侠2, 王保成2, 王明蓉2
1. 中国医药集团总公司四川抗菌素工业研究所 成都 610052;
2. 成都生物制品研究所有限责任公司 成都 610023
Efficient Soluble Expression of Anti-IgE scFv in E.coli and Optimization of Expression Conditions
LIU Qi-gang1,2, DAI Yun-jian2, ZHANG Yong-xia2, WANG Bao-cheng2, WANG Ming-rong2
1. Sichuan Industrial Institute of Antibiotics, Chengdu 610052, China;
2. Chengdu Institute of Biological Products Co., Ltd., Chengdu 610023, China
 全文: PDF(897 KB)   HTML
摘要: 目的:以抗IgE单链抗体(anti-IgE scFv)为研究对象,以大肠杆菌周质高效表达可溶性单链抗体为目标,研究不同宿主细胞、培养基及培养条件对可溶性单链抗体表达产量的影响。方法:构建Rosetta(DE3)、BL21(DE3)和SoluBL21(DE3)三种大肠杆菌工程菌,研究不同碳源、氮源、培养基配方和培养条件对可溶性抗IgE单链抗体产量的影响。结果:携带抗IgE单链抗体基因的pET-IgE26质粒在新型宿主SoluBL21(DE3)中的表达产量明显优于传统的Rosetta(DE3)和BL21(DE3)宿主菌。经碳氮源筛选、培养基和培养条件的优化,确定SoluBL21(DE3)工程菌高效表达可溶性重组抗体的最佳培养基为:以M9培养基为基础,添加0.5%葡萄糖、0.6%酪蛋白胨和0.02%微量元素。最佳的培养条件为:以LB为种子培养基,37℃过夜培养至OD600为3.0左右,以5%接种量接种于最佳发酵培养基中;接种后细胞生长条件:37℃,260r/min,培养3.5h;细胞诱导培养条件:当OD600为1.5~1.8时,降温至25℃,添加0.1mmol/L IPTG,220r/min继续培养16h。经抗原ELISA检测,抗IgE单链抗体的可溶性表达量比原始对照组提高了5倍。结论:通过对宿主细胞类型的筛选、培养基及培养条件的优化,可以显著提高重组单链抗体在大肠杆菌周质空间内的表达产量。该研究结果不仅为规模化制备抗IgE单链抗体提供了技术支持,同时为大肠杆菌生产重组小分子抗体提供了有价值的参考。
关键词: 可溶性抗体产量IgE单链抗体大肠杆菌表达条件优化    
Abstract: Objective: An anti-IgE scFv was used to investigate the influence of different host strains, growth media, and culture conditions on the high-level expression of soluble single-chain antibody fragment in E. coli periplasm. Method: Three engineered bacterial strains, Rosetta (DE3), BL21(DE3), and SoluBL21(DE3), were constructed and effects of different carbon sources, nitrogen sources, growth media, and culture conditions on the amount of expression of soluble anti-IgE scFv were evaluated. Results: The expression level of pET-IgE26, a plasmid that carried anti-IgE scFv sequence, was significantly enhanced in the novel host strain SoluBL21(DE3), compared to that in traditional Rosetta (DE3) and BL21(DE3) host strains. After optimization of carbon and nitrogen sources, growth media and culture conditions, the optimal growth media for high-level expression of soluble recombinant antibodies in SoluBL21(DE3) engineered strain was found to be M9 medium with 0.5% glucose, 0.6% bacto casitone, and 0.02% trace elements. The best culture condition was defined as growing overnight culture in LB medium at 37℃, until OD600 reached approximately 3.0, then inoculate the optimal growth media with the overnight culture at 5% inoculum concentration, shake at 37℃, 260r/min for 3.5h. For induction, lower the temperature to 25℃ when OD600 is between 1.5~1.8, add 0.1mmol/L IPTG, and incubate at 220r/min for 16h. ELISA detected that the expression of soluble anti-IgE scFv increased by 5-fold after optimization. Conclusion: Expression of recombinant scFv in E coli periplasm can be significantly enhanced through optimization of host strain types, growth media, and culture conditions. The study provides technical support for scale-up production of anti-IgE scFv and insights into the production of recombinant micromolecular antibody by E. coli.
Key words: Production of soluble antibodies    IgE scFv    E.coli    Optimization of expression conditions
收稿日期: 2012-07-19 出版日期: 2012-11-25
ZTFLH:  Q78  
基金资助: 国家"十二五""重大新药创制"科技重大专项资助项目(2011ZX09506-005)
通讯作者: 王明蓉,电子信箱:mignrongw2007@163.com     E-mail: mignrongw2007@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘启刚
代云见
张勇侠
王保成
王明蓉

引用本文:

刘启刚, 代云见, 张勇侠, 王保成, 王明蓉. 抗IgE单链抗体在大肠杆菌中可溶性高效表达条件的研究[J]. 中国生物工程杂志, 2012, 32(11): 23-28.

LIU Qi-gang, DAI Yun-jian, ZHANG Yong-xia, WANG Bao-cheng, WANG Ming-rong. Efficient Soluble Expression of Anti-IgE scFv in E.coli and Optimization of Expression Conditions. China Biotechnology, 2012, 32(11): 23-28.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I11/23

[1] Gould H J, Sutton B J. IgE in allergy and asthma today. Nature Reviews Immunology, 2008, 8: 205-217.
[2] Maloney J M, Rudengren M, Ahlstedt S, et al. The use of serum-specific IgE measurements for the diagnosis of peanut, tree nut, and seed allergy. The Journal of Allergy and Clinical Immunology, 2008, 122(1): 145-151.
[3] 李明华,殷凯生,朱桂立.哮喘病学.北京:人民卫生出版社,2005.65-75. Li M H, Yin K S, Zhu G L. Asthmology. Beijing:People's Medical Publishing House, 2005.65-75.
[4] Laffer S, Lupinek C, Rauter I, et al. A high-affinity monoclonal anti-IgE antibody for depletion of IgE and IgE-bearing cells. Allergy, 2008, 63(6):695-702.
[5] Wang M, Zhang Y, Du T, et al. Bacterial expression and characterization of a novel human anti-IgE scFv fragment. MAbs, 2011, 3(5):495-499.
[6] Takayuki O, Miyo A O, et al. Suppression of IgE B Cells and IgE Binding to FcεRI by Gene Therapy with Single-Chain Anti-IgE. The Journal of Immunology, 2009,182(12):8110-8117.
[7] Boushey H A. Experiences with monoclonal antibody therapy for allergic asthma. Allergy Clin Immunol, 2001, 108(Supp 12):S77-S83.
[8] Xiang D, Zhang J, Chen Y, et al. Expressions and purification of a mature form of recombinant human Chemerin in Escherichia coli. Protein Expr Purif, 2010, 69(2):153-158.
[9] Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biot ech nol, 2006, 72(2):211-222.
[10] Wang Z S, Xiang Q J, Wang H Y, et al. Cloning and optimizing expression of a periplasmic solute-binding gene gsiB from Escherichia coli. Journal of Genetics and Genomics, 2010, 32(5):505-511.
[11] Schirrmann T, Al-Halabi L, Dübel S, et al. Production systems for recombinant antibodies. Fronti Biosci, 2008,5(1):4576-4594.
[12] Jordan E, Hust M, Roth A, et al. Production of recombinant antibody fragments in bacillus megaterium. Microbial Cell Fact, 2007, 6: 2.
[13] Paola J, Lorenzo V, Luis A, et al. Thioredoxin fusions Increase folding of single chain Fv antibodies in the cytoplasm of Escherichia coli: evidence that chaperone activity is the prime effect of Thioredoxin. J Mol Biol, 2006, 357(1): 49-61.
[14] Olaofea O A, Burtona S G, Cowan D A, et al. Improving the production of a thermostable amidase through optimising IPTG induction in a highly dense culture of recombinant Escherichia coli. Biochemical Engineering Journal, 2010, 52(1): 19-24.
[1] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[2] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[3] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[4] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[5] 童梅,程永庆,刘金毅,徐晨. 促进大肠杆菌周质空间小分子抗体表达的菌种构建方法*[J]. 中国生物工程杂志, 2020, 40(5): 48-56.
[6] 杨丽,石晓宇,李文蕾,李剑,徐寒梅. 构建噬菌体展示抗体库过程中电穿孔法的条件优化[J]. 中国生物工程杂志, 2020, 40(4): 42-48.
[7] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[8] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[9] 赵程程,孙长坡,常晓娇,伍松陵,林振泉. 大肠杆菌细胞裂解系统的构建及其在真菌毒素降解酶表达中的应用 *[J]. 中国生物工程杂志, 2019, 39(4): 69-77.
[10] 贺雪婷,张敏华,洪解放,马媛媛. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展 *[J]. 中国生物工程杂志, 2018, 38(9): 81-87.
[11] 王云龙, 赵二霞, 李玉林. Thymidine Kinase 1(TK1)重组蛋白的表达、纯化及鉴定[J]. 中国生物工程杂志, 2017, 37(9): 15-22.
[12] 胡立强, 郑文, 钟艺, 杜丹, 杨浩, 龚萌. 抗病毒蛋白RC28在大肠杆菌和毕赤酵母中的表达及活性比较[J]. 中国生物工程杂志, 2017, 37(1): 14-20.
[13] 张宇萌, 童梅, 陆小冬, 米月, 莫婷, 刘金毅, 姚文兵. 大肠杆菌可溶性表达抗TNF-α Fab的工艺优化[J]. 中国生物工程杂志, 2016, 36(9): 31-37.
[14] 刘婷婷, 梁梓强, 梁士可, 郭技星, 王方海. 利用生物工程技术生产蜘蛛丝的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 132-137.
[15] 张宇萌, 童梅, 陆小冬, 米月, 徐晨, 姚文兵. 提高大肠杆菌可溶性重组蛋白表达产率的研究进展[J]. 中国生物工程杂志, 2016, 36(5): 118-124.