Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 87-94    
综述     
转录因子结合位点共现研究进展
李嘉平1, 张先文1,2, 陈信波1,2
1. 作物基因工程湖南省重点实验室 长沙 410128;
2. 湖南农业大学生物科学技术学院 长沙 410128
The Co-occurrence of Transcription Factor Binding Sites
LI Jia-ping1, ZHANG Xian-wen1,2, CHEN Xin-bo 1,2
1. Crop Gene Engineering Key Laboratory of Hunan Province, Changsha 410128, China;
2. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
 全文: PDF(495 KB)   HTML
摘要: 在启动子区域中,通常存在多个转录因子结合位点(transcription factor binding site,TFBS)与不同或相同的转录因子结合。这些TFBS,不但将转录因子与目标基因联系起来,还间接提供了转录因子间协同作用的线索。而转录因子间的协同作用,是转录调控网络的重要组成部分。因此,识别在一个启动子区域同时出现的多个TFBS是构建转录调控网络的重要途径。在启动子区域成对出现的TFBS,通常用配对模体(motif pair)来表示。由多个TFBS构成的调控区域则通常被称为顺式调控模块(CRM,cis-regulatory modules)。配对模体与CRM的识别算法利用了它们的保守性、位置与距离偏好性以及调控基因共表达等特性提高识别的准确性。根据TFBS的共现构建转录调控网络仍然具有较大的局限性,多种不同数据来源的整合是未来的研究方向。
关键词: 转录因子结合位点配对模体顺式调控模块转录调控网络    
Abstract: Transcription factor binding sites (TFBS) which bind the same or different transcription factors (TF) tend to co-occur in the promoter regions. TF and target gene was connected by these TFBS, which also provide the clue of TF synergy. The synergism of TF is an important part of the gene regulatory network (GRN). Identifying TFBS co-occurrence in the promoter region is an essential approach to construct GRN. The co-occurring TFBS in the promoter was called motif pair. The regulatory region that contains multiple TFBS was known as cis-regulatory modules (CRM). Accuracy of motif pair and CRM identification algorithm was improved by considering their conservation, specific location and distance, and the regulation of co-expressed genes. Great limitation still exists for constructing GRN by TFBS co-occurrence. Data integration of diverse sources will alleviate the problem in the future.
Key words: Transcription factor binding site    Motif pair    Cis-regulatory modules    gene regulatory network
收稿日期: 2011-12-30 出版日期: 2012-09-25
ZTFLH:  Q7  
基金资助: 国家转基因生物新品种培育科技重大专项(2009ZX08001026B); 湖南省科技重大专项(2009FJ1004-1);国家自然科学基金(31000125)资助项目
通讯作者: 陈信波     E-mail: xinbochen@live.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李嘉平
张先文
陈信波

引用本文:

李嘉平, 张先文, 陈信波. 转录因子结合位点共现研究进展[J]. 中国生物工程杂志, 2012, 32(09): 87-94.

LI Jia-ping, ZHANG Xian-wen, CHEN Xin-bo. The Co-occurrence of Transcription Factor Binding Sites. China Biotechnology, 2012, 32(09): 87-94.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/87

[1] Zhou Q, Wong W H. CisModule: de novo discovery of cis-regulatory modules by hierarchical mixture modeling. Proceedings of The National Academy of Sciences of The United States of America, 2004, 101(33):12114-12119.
[2] Lenhard B, Sandelin A, Mendoza L, et al. Identification of conserved regulatory elements by comparative genome analysis. Journal of Biology, 2003, 2(2):13-23.
[3] Yu X, Lin J, Zack D J, et al. Computational analysis of tissue-specific combinatorial gene regulation: predicting interaction between transcription factors in human tissues. Nucleic Acids Research, 2006, 34(17):4925-4936.
[4] Chawade A, Bräutigam M, Lindlöf A, et al. Putative cold acclimation pathways in Arabidopsis thaliana identified by a combined analysis of mRNA co-expression patterns, promoter motifs and transcription factors. BMC Genomics, 2007, 8:304.
[5] Hannenhalli S, Levy S. Predicting transcription factor synergism. Nucleic Acids Research, 2002, 30(19):4278-4284.
[6] Sosinsky A, Honig B, Mann R S, et al. Discovering transcriptional regulatory regions in Drosophila by a nonalignment method for phylogenetic footprinting. Proceedings of The National Academy of Sciences of The United States of America, 2007, 104(15):6305-6310.
[7] Vardhanabhuti S, Wang J, Hannenhalli S. Position and distance specificity are important determinants of cis-regulatory motifs in addition to evolutionary conservation. Nucleic Acids Research, 2007, 35(10):3203-3213.
[8] Janky R, van Helden J. Evaluation of phylogenetic footprint discovery for predicting bacterial cis-regulatory elements and revealing their evolution. BMC Bioinformatics, 2008, 9:37.
[9] Kellis M, Patterson N, Endrizzi M, et al. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature, 2003, 423(6937):241-254.
[10] Jin V X, Singer G A, Agosto-Pérez F J, et al. Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs. BMC Bioinformatics, 2006, 7:114.
[11] Lu J, Luo L, Zhang Y. Distance conservation of transcription regulatory motifs in human promoters. Computational Biology And Chemistry, 2008, 32(6):433-437.
[12] Zhang Z, Gerstein M. Of mice and men: phylogenetic footprinting aids the discovery of regulatory elements. Journal of Biology, 2003, 2(2):11-14.
[13] Pape U J, Klein H, Vingron M. Statistical detection of cooperative transcription factors with similarity adjustment. Bioinformatics, 2009, 25(16):2103-2109.
[14] Sudarsanam P, Pilpel Y, Church G M. Genome-wide co-occurrence of promoter elements reveals a cis-regulatory cassette of rRNA transcription motifs in Saccharomyces cerevisiae. Genome Research, 2002, 12(11):1723-1731.
[15] Yu X, Lin J, Masuda T, et al. Genome-wide prediction and characterization of interactions between transcription factors in Saccharomyces cerevisiae. Nucleic Acids Research, 2006, 34(3):917-927.
[16] Yokoyama K D, Ohler U, Wray G A. Measuring spatial preferences at fine-scale resolution identifies known and novel cis-regulatory element candidates and functional motif-pair relationships. Nucleic Acids Research, 2009, 37(13):e92.
[17] Kulakovskiy I V, Belostotsky A A, Kasianov A S, et al. A deeper look into transcription regulatory code by preferred pair distance templates for transcription factor binding sites. Bioinformatics, 2011, 27(19):2621-2624.
[18] Tharakaraman K, Bodenreider O, Landsman D, et al. The biological function of some human transcription factor binding motifs varies with position relative to the transcription start site. Nucleic Acids Research, 2008, 36(8):2777-2786.
[19] Murakami K, Imanishi T, Gojobori T, et al. Two different classes of co-occurring motif pairs found by a novel visualization method in human promoter regions. BMC Genomics, 2008, 9:112.
[20] Berendzen K W, Stüber K, Harter K, et al. Cis-motifs upstream of the transcription and translation initiation sites are effectively revealed by their positional disequilibrium in eukaryote genomes using frequency distribution curves. BMC Bioinformatics, 2006, 7(1):522.
[21] Veerla S, Ringnér M, Höglund M. Genome-wide transcription factor binding site/promoter databases for the analysis of gene sets and co-occurrence of transcription factor binding motifs. BMC Genomics, 2010, 11:145.
[22] Gu Q, Nagaraj S H, Hudson N J, et al. Genome-wide patterns of promoter sharing and co-expression in bovine skeletal muscle. BMC Genomics, 2011, 12(1):23.
[23] Banerjee N, Zhang M Q. Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Research, 2003, 31(23):7024-7031.
[24] Lindlöf A, Bräutigam M, Chawade A, et al. In silico analysis of promoter regions from cold-induced genes in rice (Oryza sativa L.) and Arabidopsis thaliana reveals the importance of combinatorial control. Bioinformatics, 2009, 25(11):1345-1348.
[25] Segal E, Shapira M, Regev A, et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 2003, 34(2):166-176.
[26] Kato M, Tsunoda T. MotifCombinator: a web-based tool to search for combinations of cis-regulatory motifs. BMC Bioinformatics, 2007, 8:100.
[27] Chang W C, Lee T Y, Huang H D, et al. PlantPAN: Plant promoter analysis navigator, for identifying combinatorial cis-regulatory elements with distance constraint in plant gene groups. BMC Genomics, 2008, 9(1):561.
[28] Suyama M, Harrington E D, Vinokourova S, et al. A network of conserved co-occurring motifs for the regulation of alternative splicing. Nucleic Acids Research, 2010, 38(22):7916-7926.
[29] Hu J, Hu H, Li X. MOPAT: a graph-based method to predict recurrent cis-regulatory modules from known motifs. Nucleic Acids Research, 2008, 36(13):4488-4497.
[30] Huen D S, Russell S. On the use of resampling tests for evaluating statistical significance of binding-site co-occurrence. BMC Bioinformatics, 2010, 11:359.
[31] Das M K, Dai H K. A survey of DNA motif finding algorithms. BMC Bioinformatics, 2007, 8(Suppl 7):S21.
[32] Hu Y, Sandmeyer S, McLaughlin C. Combinatorial motif analysis and hypothesis generation on a genomic scale. Bioinformatics, 2000, 16(3):222-232.
[33] GuhaThakurta D, Stormo G D. Identifying target sites for cooperatively binding factors. Bioinformatics, 2001, 17(7):608-621.
[34] Liu X, Brutlag D L, Liu J S. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pacific Symposium On Biocomputing. Pacific Symposium On Biocomputing, 2001,6:127-138.
[35] Thompson W, Rouchka E C, Lawrence C E. Gibbs Recursive Sampler: finding transcription factor binding sites. Nucleic Acids Research, 2003, 31(13):3580-3585.
[36] Das D, Banerjee N, Zhang M Q. Interacting models of cooperative gene regulation. Proceedings of The National Academy of Sciences of The United States of America, 2004, 101(46):16234-16239.
[37] Bi C, Rogan PK. Bipartite pattern discovery by entropy minimization-based multiple local alignment. Nucleic Acids Research, 2004, 32(17):4979-4991.
[38] Smith A D, Sumazin P, Das D, et al. Mining ChIP-chip data for transcription factor and cofactor binding sites. Bioinformatics, 2005, 21(Suppl 1):1403-1412.
[39] Monsieurs P, Thijs G, Fadda A A, et al. More robust detection of motifs in coexpressed genes by using phylogenetic information. BMC Bioinformatics, 2006, 7:160.
[40] Wang J, Hannenhalli S. A mammalian promoter model links cis elements to genetic networks. Biochemical And Biophysical Research Communications, 2006, 347(1):166-177.
[41] Jiang B, Zhang M Q, Zhang X. OSCAR: one-class SVM for accurate recognition of cis-elements. Bioinformatics, 2007, 23(21):2823-2828.
[42] Donaldson I J, Göttgens B. CoMoDis: composite motif discovery in mammalian genomes. Nucleic Acids Research, 2007, 35(1):e1.
[43] Gruel J, LeBorgne M, LeMeur N, et al. Simple Shared Motifs (SSM) in conserved region of promoters: a new approach to identify co-regulation patterns. BMC Bioinformatics, 2011, 12(1):365.
[44] Xu M, Weinberg C R, Umbach D M, et al. coMOTIF: A Mixture Framework for Identifying Transcription Factor and a Co-regulator Motif in ChIP-seq Data. Bioinformatics, 2011, 27(19):2625-2632.
[45] Su J, Teichmann S A, Down T A. Assessing computational methods of cis-regulatory module prediction. PLoS Computational Biology, 2010, 6(12):e1001020.
[46] Michelson A M. Deciphering genetic regulatory codes: a challenge for functional genomics. Proceedings of The National Academy of Sciences of The United States of America, 2002, 99(2):546-548.
[47] Krivan W, Wasserman W W. A predictive model for regulatory sequences directing liver-specific transcription. Genome Research, 2001, 11(9):1559-1566.
[48] Philippakis A A, He F S, Bulyk M L. Modulefinder: a tool for computational discovery of cis regulatory modules. Pacific Symposium On Biocomputing. Pacific Symposium On Biocomputing, 2005, 10:519-530.
[49] Warner J B, Philippakis A A, Jaeger S A, et al. Systematic identification of mammalian regulatory motifs’ target genes and functions. Nature Methods, 2008, 5(4):347-353.
[50] He X, Ling X, Sinha S. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution. PLoS Computational Biology, 2009, 5(3):e1000299.
[51] Ray P, Shringarpure S, Kolar M, et al. CSMET: comparative genomic motif detection via multi-resolution phylogenetic shadowing. PLoS Computational Biology, 2008, 4(6):e1000090.
[52] Balhoff J P, Wray G A. Evolutionary analysis of the well characterized endo16 promoter reveals substantial variation within functional sites. Proceedings of The National Academy of Sciences of The United States of America, 2005, 102(24):8591-8596.
[53] Ho M C W, Johnsen H, Goetz S E, et al. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila. PLoS Genetics, 2009, 5(11):e1000709.
[54] Williams T M, Selegue J E, Werner T, et al. The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell, 2008, 134(4):610-623.
[55] Makeev V J, Lifanov A P, Nazina A G, et al. Distance preferences in the arrangement of binding motifs and hierarchical levels in organization of transcription regulatory information. Nucleic Acids Research, 2003, 31(20):6016-6026.
[56] Gupta M, Liu J S. De novo cis-regulatory module elicitation for eukaryotic genomes. Proceedings of The National Academy of Sciences of The United States of America, 2005, 102(20):7079-7084.
[57] Wasserman W W, Fickett J W. Identification of regulatory regions which confer muscle-specific gene expression. Journal of Molecular Biology, 1998, 278(1):167-181.
[58] Sharan R, Ovcharenko I, Ben-Hur A, et al. CREME: a framework for identifying cis-regulatory modules in human-mouse conserved segments. Bioinformatics, 2003, 19(Suppl 1):i283-i291.
[59] Sharan R, Ben-Hur A, Loots G G, et al. CREME: Cis-Regulatory Module Explorer for the human genome. Nucleic Acids Research, 2004, 32(Web Server issue):W253-W256.
[60] Liu R, Hannenhalli S, Bucan M. Motifs and cis-regulatory modules mediating the expression of genes co-expressed in presynaptic neurons. Genome Biology, 2009, 10(7):R72.
[61] Frith M C, Li M C, Weng Z. Cluster-Buster: Finding dense clusters of motifs in DNA sequences. Nucleic Acids Research, 2003, 31(13):3666-3668.
[62] Vandepoele K, Casneuf T, Van de Peer Y. Identification of novel regulatory modules in dicotyledonous plants using expression data and comparative genomics. Genome Biology, 2006, 7(11):R103.
[63] Sinha S, He X. MORPH: probabilistic alignment combined with hidden Markov models of cis-regulatory modules. PLoS Computational Biology, 2007, 3(11):e216.
[64] Van Loo P, Aerts S, Thienpont B, et al. ModuleMiner - improved computational detection of cis-regulatory modules: are there different modes of gene regulation in embryonic development and adult tissues. Genome Biology, 2008, 9(4):R66.
[65] Pilpel Y, Sudarsanam P, Church G M. Identifying regulatory networks by combinatorial analysis of promoter elements. Nature Genetics, 2001, 29(2):153-159.
[66] Vandepoele K, Quimbaya M, Casneuf T, et al. Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiology, 2009, 150(2):535-546.
[67] 李敏俐, 王薇, 陆祖宏. ChIP技术及其在基因组水平上分析DNA与蛋白质相互作用. 遗传, 2010, 32(3):219-228. Li M L, Wang W, Lu Z H. Genomic analysis of DNA-protein interaction by chromatin immunoprecipitation. Hereditas, 2010, 32(3):219-228.
[68] Boyle A P, Song L, Lee B K, et al. High-resolution genome-wide in vivo footprinting of diverse transcription factors in human cells. Genome Research, 2011, 21(3):456-464.
[1] 徐军, 刘翠翠, 丁德武, 孙啸, 谢建明. 产电微生物基因调控网络的构建和特异性通路分析[J]. 中国生物工程杂志, 2014, 34(11): 42-46.