Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 82-86    
综述     
诱导性多能干细胞向神经细胞分化的研究进展
单威1, 余勤1, 刘丽珍2, 王标1
1. 浙江中医药大学生物工程学院 杭州 310053;
2. 浙江大学医学院附属第一医院骨髓移植中心 杭州 310003
Research Progress in Neuronal Differentiation of Induced Pluripotent Stem Cell
SHAN Wei1, YU Qin1, LIU Li-zhen2, WANG Biao1
1. Institute of Biological Engineering, Zhejiang Chinese Medicine University, Hangzhou 310053, China;
2. Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(410 KB)   HTML
摘要: 诱导性多能干细胞(induced pluripotent stem cell, iPS cell)是通过转染外源特定的基因组合来诱导成体细胞重编程为类似于胚胎干细胞的一种多潜能干细胞,iPS细胞与胚胎干细胞不仅在形态上相似,而且在功能方面几乎相同。另外,iPS细胞的诞生克服了胚胎干细胞在临床应用时涉及的移植免疫排斥与伦理道德问题,因此具有重要的临床应用价值。目前iPS在治疗中枢神经系统性疾病方面的研究已取得很大进展,包括iPS细胞向神经细胞诱导分化方法的改进、分化机理的探索以及iPS细胞分化来源神经细胞在神经系统疾病模型中治疗作用的研究等。从iPS细胞的创建及特点、iPS细胞向神经细胞分化的诱导方法及研究新进展方面予以综述。
关键词: iPS细胞神经分化胚胎干细胞    
Abstract: Induced pluripotent stem cell (iPSC), which is generated by reprogramming the somatic cells through thansfection of a combination of specific genes, owns the similar biological properties with embryonic stem cell. iPSC is morphologically identical to embryonic stem cell and show infinite proliferation, self-renewal abilities, teratoma formation after subcutaneous injection and contribution to chimeric animals on injection into blastocysts. Several molecular and functional assays are set to evaluate the similarity of iPSC with embryonic stem cell. Furthermore, the generation of iPSC overcomes the ethical difficulties and the risk of transplant rejection by the host immune system, implying great clinical potential. Great progresses have been achieved in the area of iPSC about treating the diseases of central nervous system, including the improvement of the methods about neuronal differentiation, the research of differentiation mechanisms and the treatment of neuronal cells derived from iPSC on the diseases of nervous system. The creation and characteristic of iPSC and the methods about neuronal differentiation of iPSC are reviewed. It also summarizes the recent progress in neuronal differentiation of iPSC.
Key words: Induced pluripotent stem cell    Neuronal differentiation    Embryonic stem cell
收稿日期: 2012-01-12 出版日期: 2012-09-25
ZTFLH:  Q813  
基金资助: 浙江省科技计划资助项目(2009C14011)
通讯作者: 余勤     E-mail: qinyu3587@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
单威
余勤
刘丽珍
王标

引用本文:

单威, 余勤, 刘丽珍, 王标. 诱导性多能干细胞向神经细胞分化的研究进展[J]. 中国生物工程杂志, 2012, 32(09): 82-86.

SHAN Wei, YU Qin, LIU Li-zhen, WANG Biao. Research Progress in Neuronal Differentiation of Induced Pluripotent Stem Cell. China Biotechnology, 2012, 32(09): 82-86.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/82

[1] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 126(4):663-676.
[2] Yu J, Vodyanik M A, Smuga-Otto K, et al.Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007, 318(5858):1917-1920.
[3] Takahashi K, Tanabe K, Yamanaka S, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007, 131(5):861-872.
[4] Robinton D A, Daley G Q. The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481(7381):295-305.
[5] Li X J, Hu B Y, Zhang Y S, et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells, 2008, 26(4): 886-893.
[6] Nemati S, Hatami M, Kiani S, et al. Long-term self-renewable feeder-free human induced pluripotent stem cell-derived neural progenitors. Stem Cell Dev, 2011, 20(3):503-514.
[7] Elkabetz Y, Panagiotakos G, Al Shamy G, et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev, 2008, 22(2):152-165.
[8] Elkabetz Y, Studer L. Human ESC-derived neural rosettes and neural stem cell progression. Cold Spring Harb Symp Quant Biol, 2008, 73:377-387.
[9] Erceg S, Ronaghi M, Stojkovic M. Human embryonic stem cell differentiation toward regional specific neural precursors. Stem Cells, 2009, 27(1):78-87.
[10] Parsons X H, Teng Y D, Parsons J F, et al. Efficient derivation of human neuronal progenitors and neurons from pluripotent human embryonic stem cells with small molecule induction. J VIS Exp, 2011, (56):3273.
[11] Malgrange B, Borgs L, Grobarczyk B, et al. Using human pluripotent stem cells to untangle neurodegenerative disease mechanisms. Cell Mol Life Sci, 2011, 68(4):635-649.
[12] Cai C, Thorne J, Grabel L. Hedgehog serves as a mitogen and survival factor during embryonic stem cell. Stem Cell, 2008, 26(5):1097-1098.
[13] Chaturvedi G, Simone PD, Ain R, et al. Noggin maintains pluripotency of human embryonic stem cells grown on Matrigel. Cell Prolif, 2009, 42(4):425-433.
[14] Koch P, Opitz T, Steinbeck J A, et al. A rosette-type self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci USA, 2009, 106(9):3225-3230.
[15] Preynat-Seauve O, Suter D M, Tirefort D, et al. Development of human nervous tissue upon differentiation of embryonic stem cells in three-dimensional culture. Stem Cells, 2009, 27(3):509-520.
[16] Joannides A J, Fiore-Heriche C, Battersby A A, et al. A scaleable and defined system for generating neural stem cells from human embryonic stem cells. Stem Cells, 2007, 25(3):731-737.
[17] Davidson K C, Jamshidi P, Daly R, et al. Wnt3a regulates survival, expansion, and maintenance of neural progenitors derived from human embryonic stem cells. Mol Cell Neurosci, 2007, 36(3):408-415.
[18] Wada T, Honda M, Minami I, et al. Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embry-onic stem cells. PLoS One, 2009, 4(8):e6722.
[19] Kim D S, Lee J S, Leem J W, et al. Robust enhancement of neural differentiation from human ES and iPS cells regardless of their innate difference in differentiation propensity. Stem Cell Rev, 2010, 6(2):270-281.
[20] Chambers S M, Fasano C A, Papapetrou E P, et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol, 2009, 27(3):275-280.
[21] Hu B Y, Weick J P, Yu J Y, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA, 2010, 107(9):4335-4340.
[22] Nemati S, Hatami M, Kiani S, et al. Long-Term self-renewable feeder-free human induced pluripotent stem cell-derived neural progenitors. Stem Cells Dev, 2011, 20(3): 503-514.
[23] Karumbayaram S, Novitch B G, Patterson M, et al. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells, 2009, 27(4):806-811.
[24] Kitazawa A, Shimizu N. Differentiation of mouse induced pluripotent stem cells into neurons using conditioned medium of dorsal root ganglia. New Biotechnology, 2011, 28(4):326-333.
[25] Dimos J T, Rodolfa K T, Niakan K K, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science, 2008, 321(5893):1218-1221.
[26] Xu J, Wang H, Liang T, et al. In vitro induction of mouse meningeal-derived iPS cells into neural-like cells. Cell Biology, 2011, 56(15): 1556-1561.
[27] Wernig M, Zhao J P, Pruszak J, et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson’s disease. Proc Nat1 Acad Sci USA, 2008, 105(15):5856-5861.
[28] Soldner F, Hockemeyer D, Beard C, et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, 2009, 136(5): 964-977.
[29] Yahata N, Asai M, Kitaoka S, et al. Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer’s disease. PloS One, 2011, 6(9):e25788.
[1] 钱昱,丁晓雨,刘志强,袁增强. 基因修饰人多能干细胞的高效单克隆建系方法[J]. 中国生物工程杂志, 2021, 41(8): 33-41.
[2] 李光然,王伟. 小分子化合物在干细胞神经分化中的研究进展 *[J]. 中国生物工程杂志, 2018, 38(3): 76-80.
[3] 孙元元, 李薇, 叶守东, 刘大海. Gadd45g诱导小鼠胚胎干细胞向中内胚层分化[J]. 中国生物工程杂志, 2017, 37(4): 9-17.
[4] 吴升星, 李艳, 张海燕, 刘洋, 赖琼, 杨明. 诱导多能干细胞技术在药物研发领域中的前景[J]. 中国生物工程杂志, 2017, 37(11): 116-122.
[5] 陈静静, 邢桂春, 张令强. 基于Loxp-Cre系统的FBXL15基因敲除小鼠模型的建立[J]. 中国生物工程杂志, 2015, 35(4): 74-79.
[6] 赵瑞媛, 刘春霞, 李慧鹏, 王申元, 周欢敏. 饲养层细胞对绵羊胚胎干细胞体外培养的影响[J]. 中国生物工程杂志, 2015, 35(2): 18-24.
[7] 孙静, 王斌, 段志青, 胡凝珠, 李建芳, 李彦涵, 胡云章. 重组人LIF融合蛋白表达纯化及其活性鉴定[J]. 中国生物工程杂志, 2013, 33(5): 50-55.
[8] 何丁文, 殷明, 邬亚华, 周荣平, 魏强强, 殷嫦嫦. Wnt/β-catenin信号通路在大鼠BMSCs神经分化中的作用研究[J]. 中国生物工程杂志, 2013, 33(3): 61-67.
[9] 孙昊, 卢存福, 郭允倩. LSD1通过和Oct4/Nanog相互作用调节诱导多能干细胞的形成[J]. 中国生物工程杂志, 2012, 32(12): 25-29.
[10] 马海滨, 侯玲玲, 王晓宇, 关伟军, 马月辉. 诱导性多潜能干细胞(iPS细胞)的研究进展[J]. 中国生物工程杂志, 2011, 31(8): 124-132.
[11] 何文俊 叶玲玲 李世崇 刘红 王启伟 王海涛 谢靖 陈昭烈. 搅拌式生物反应器培养促进拟胚体的形成及其向心肌细胞分化[J]. 中国生物工程杂志, 2009, 29(11): 1-6.
[12] 毛建平 王全会 周颖 方静 崔玉芳. 桥式PCR,一种简易连接DNA标签序列的方法[J]. 中国生物工程杂志, 2009, 29(11): 66-69.
[13] 王芳,杜庆安,朱宛宛,吴迪,徐艳玲,关云谦,张愚. 小鼠胚胎干细胞分化扩增期连续低密度传代对原始细胞中Oct-4阳性细胞比例及神经分化能力的影响[J]. 中国生物工程杂志, 2009, 29(04): 39-45.
[14] 朱宛宛,杜庆安,王淑艳,徐艳玲,关云谦,张愚. 免疫磁珠分选降低分化体系中胚胎干细胞的比例[J]. 中国生物工程杂志, 2009, 29(03): 63-68.
[15] 鲍柳君,叶荣,韩甫,张军超,张焕相. 小鼠胚胎干细胞结合丝素材料向神经细胞分化的实验研究[J]. 中国生物工程杂志, 2008, 28(12): 72-76.