Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (09): 101-106    
综述     
分枝杆菌噬菌体重组系统及其应用
樊祥宇, 谢建平
西南大学生命科学学院 三峡库区生态环境与生物资源省部共建国家重点实验室培育基地 现代生物医药研究所 重庆 400715
Recombineering Based on Mycobacteriophage and Its Application
FAN Xiang-yu, XIE Jian-ping
Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Enviroment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Chongqing 400715, China
 全文: PDF(406 KB)   HTML
摘要: 噬菌体是微生物遗传学研究的有力工具及源泉。分枝杆菌噬菌体也是构建分枝杆菌,尤其是结核分枝杆菌遗传研究工具的基础。目前,基于分枝杆菌噬菌体重组酶的重组系统是国际热点。总结了近年来基于分枝杆菌噬菌体Che9c重组酶gp60、gp61所构建的分枝杆菌重组工程体系及其在分枝杆菌基因组研究方面的应用,并结合实验室工作展望了其研究前景。该体系不依赖细菌自身的RecA系统,不需要限制性内切核酸酶和DNA连接酶,不需要复杂的体外操作,只需表达分枝杆菌噬菌体重组酶,从而使结核分枝杆菌基因敲除、基因敲入及点突变和构建分枝杆菌噬菌体突变株更方便。这为分枝杆菌及其噬菌体基因诱变及基因功能研究提供了迅捷的新途径。
关键词: 重组酶同源重组重组工程分枝杆菌    
Abstract: Bacteriophage is a powerful tool to address fundamental genetics issues. This is true for Mycobacteriophages too, a well-documented resource for Mycobacterium tuberculosis genetics. Recent developments of mycobacterial recombineering system, which is based on mycobacteriophage Che9c-encoded proteins, are reviewed and its application in basic M. tuberculosis biology is outlined. The advantage of this system is that it is independent of bacterial recA system, restriction endonuclease and DNA ligase, and complex in vitro manipulation. The expression of Che9c-encoded exonuclease and recombinase could substantially complete the construction of gene knockouts or knock-ins, point mutants and mycobacteriophage mutants. The mycobacterial recombineering system is a facile new tool to study gene function and for mutation analysis.
Key words: Recombinase    Homologous recombination    Recombineering    Mycobacterium
收稿日期: 2011-12-06 出版日期: 2012-09-25
ZTFLH:  Q93  
基金资助: 国家重要传染病十二五科技重大专项(2008ZX10003-006,2012ZX10003-003);中央高校基本科研业务费专项资金(XDJK2009A003,XDJK2011D006,XDJK2011C020);国家自然科学基金(81071316);新世纪优秀人才资助计划(NCET-2011)资助项目
通讯作者: 谢建平     E-mail: georgex@swu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
樊祥宇
谢建平

引用本文:

樊祥宇, 谢建平. 分枝杆菌噬菌体重组系统及其应用[J]. 中国生物工程杂志, 2012, 32(09): 101-106.

FAN Xiang-yu, XIE Jian-ping. Recombineering Based on Mycobacteriophage and Its Application. China Biotechnology, 2012, 32(09): 101-106.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I09/101

[1] Court D L, Sawitzke J A, Thomason L C.Genetic engineering using homologous recombination. Annu Rev Genet, 2002,36:361-388.
[2] Copeland N G, Jenkins N A, Court D L. Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet, 2001,2(10): 769-779.
[3] Sarov M, Schneider S, Pozniakovski A, et al. A recombineering pipeline for functional genomics applied to Caenorhabditis elegans. Nat Methods, 2006,3(10): 839-844.
[4] Yu D, Ellis H, Lee E. An efficient recombination system for chromosome engineering in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2000,97(11): 5978.
[5] Ellis H, Yu D, DiTizio T. High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proceedings of the National Academy of Sciences of the United States of America, 2001,98(12): 6742.
[6] 张雪, 温廷益. Red重组系统用于大肠杆菌基因修饰研究进展. 中国生物工程杂志, 2008, 28(12): 89-93. Zhang X, Wen T Y. Advances of red recombination system in Escherichia coli gene modification. China Biotechnology, 2008, 28(12): 89-93.
[7] Datta S, Costantino N, Zhou X. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proceedings of the National Academy of Sciences, 2008,105(5): 1626.
[8] Bouchard J, Moineau S. Homologous recombination between a lactococcal bacteriophage and the chromosome of its host strain. Virology, 2000,270(1): 65-75.
[9] Bae T, Baba T, Hiramatsu K, et al. Prophages of Staphylococcus aureus Newman and their contribution to virulence. Molecular Microbiology, 2006,62(4): 1035-1047.
[10] Loessner M, Inman R, Lauer P, et al. Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Molecular Microbiology, 2000,35(2): 324-340.
[11] Lüneberg E, Mayer B, Daryab N, et al Chromosomal insertion and excision of a 30 kb unstable genetic element is responsible for phase variation of lipopolysaccharide and other virulence determinants in Legionella pneumophila. Molecular Microbiology, 2001,39(5): 1259-1271.
[12] Van Kessel J, Hatfull G. Recombineering in Mycobacterium tuberculosis. Nature Methods, 2006,4(2): 147-152.
[13] Murphy K C. Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol, 1998,180(8): 2063-2071.
[14] Muyrers J P, Zhang Y, Buchholz F, et al. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev, 2000,14(15): 1971-1982.
[15] Iyer L M, Koonin E V, Aravind L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genomics, 2002,3(1): 8.
[16] Zhang Y, Buchholz F, Muyrers J P, et al. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet, 1998,20(2): 123-128.
[17] Jacobs W, Tuckman M, Bloom B. Introduction of foreign DNA into mycobacteria using a shuttle phasmid, 1987,327(6122):532-535.
[18] Hatfull G. Mycobacteriophages: Genes and genomes. Annual Review of Microbiology, 2010,64:331-356.
[19] Pedulla M, Ford M, Houtz J, et al. Origins of highly mosaic mycobacteriophage genomes. Cell, 2003,113(2): 171-182.
[20] Hatfull G, Pedulla M, Jacobs-Sera D, et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet, 2006,2(6): e92.
[21] Van Kessel J, Marinelli L, Hatfull G. Recombineering mycobacteria and their phages. Nature Reviews Microbiology, 2008,6(11): 851-857.
[22] Hill F, Benes V, Thomasova D, et al. BAC Trimming: Minimizing Clone Overlaps. Genomics, 2000,64(1): 111-113.
[23] Gay P, Le Coq D, Steinmetz M, et. Cloning structural gene sacB, which codes for exoenzyme levansucrase of Bacillus subtilis: expression of the gene in Escherichia coli. Journal of Bacteriology, 1983,153(3): 1424.
[24] Oppenheim A, Rattray A, Bubunenko M, et al. In vivo recombineering of bacteriophage by PCR fragments and single-strand oligonucleotides. Virology, 2004,319(2): 185-189.
[25] Lee E. A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics, 2001,73(1): 56-65.
[1] 郭曼曼,田开仁,乔建军,李艳妮. 噬菌体重组酶系统在合成生物学中的应用*[J]. 中国生物工程杂志, 2021, 41(8): 90-102.
[2] 白嘉诚,迟明哲,胡亚文,郝梦,张雪莲. 耻垢分枝杆菌ClpC和ClpX敲低表达菌株的构建及表型分析*[J]. 中国生物工程杂志, 2021, 41(6): 13-22.
[3] 马巧妮,王萌,朱兴全. 重组酶介导扩增技术及其在病原微生物快速检测中的应用进展*[J]. 中国生物工程杂志, 2021, 41(6): 45-49.
[4] 樊斌,陈欢,宋婉莹,陈光,王刚. 乳酸菌基因改造技术研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 84-92.
[5] 郭胜楠, 李信晓, 王峰, 刘昆梅, 丁娜, 扈启宽, 孙涛. 海马与新皮质组织特异性GABRG2基因敲除小鼠模型的构建及其在遗传性癫痫伴热性惊厥附加症中的初步研究 *[J]. 中国生物工程杂志, 2020, 40(3): 9-20.
[6] 盛晓菁,齐晓雪,徐蕾,戚智青,刁勇. 基因克隆及组装技术的研究进展 *[J]. 中国生物工程杂志, 2020, 40(1-2): 133-139.
[7] 王刚,肖雨,李义,刘志刚,裴成利,武丽达,李艳丽,王希庆,张明磊,陈光,佟毅. ldhL-ldb0094基因敲除对保加利亚乳杆菌产L-乳酸的影响 *[J]. 中国生物工程杂志, 2019, 39(8): 66-73.
[8] 谭杨,刘胜,罗凤玲,章晓联. 结核分枝杆菌H37Rv刺激巨噬细胞后差异表达lncRNA分析及鉴定 *[J]. 中国生物工程杂志, 2018, 38(5): 1-9.
[9] 秦梦菲, 孙鸿, 宋浩. 分枝杆菌细胞裂解液催化甾体激素C1,2位脱氢反应的研究[J]. 中国生物工程杂志, 2017, 37(8): 23-30.
[10] 战春君, 李翔, 刘国强, 刘秀霞, 杨艳坤, 白仲虎. 巴斯德毕赤酵母甘油转运体的发现及功能研究[J]. 中国生物工程杂志, 2017, 37(7): 48-55.
[11] 陈建武, 任红艳, 华文君, 刘西梅, 綦世金, 周黎, 欧阳艳, 毕延震, 杨烨, 郑新民. 一种用于提高基因打靶效率的双荧光筛选策略[J]. 中国生物工程杂志, 2017, 37(1): 58-63.
[12] 赵莹, 刘津, 王长松, 赵广荣. 微生物合成黄酮类研究进展[J]. 中国生物工程杂志, 2014, 34(4): 110-117.
[13] 郝梓凯, 李丕武, 郝昭程, 陈利飞. 敲除frdB基因对大肠杆菌厌氧混合酸发酵的影响[J]. 中国生物工程杂志, 2014, 34(11): 67-75.
[14] 陆健, 江佳稀, 刘建平, 王洪海. 结核分枝杆菌抗原重组酿酒酵母免疫诱导小鼠特异性免疫应答[J]. 中国生物工程杂志, 2014, 34(11): 47-53.
[15] 马怀远, 黄非, 白林含. 利用同源重组的方法提高大肠杆菌W3110天冬氨酸的积累[J]. 中国生物工程杂志, 2014, 34(06): 61-67.