Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (08): 30-35    
研究报告     
金发草LEA 3 基因两个剪接体转化酿酒酵母的抗非生物胁迫功能分析
李锐1, 王文国2, 范林洪1, 王胜华1
1. 四川大学生命科学学院 生物资源与生态环境教育部重点实验室 成都 610064;
2. 农业部沼气科学研究所 生物质能技术研究中心 成都 610041
Abiotic Stress Tolerance Analysis Two Alternatively Spliced Isoforms of LEA3 Gene from Pogonatherum paniceum in Yeast
LI Rui1, WANG Wen-guo2, FAN Lin-hong1, WANG Sheng-hua 1
1. College of Life Sciences, Sichuan University, Department of Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Chengdu 610064, China;
2. Research Centre of Biomass Energy Technology, Biogas Institute of Ministry of Agriculture,Chengdu 610041, China
 全文: PDF(641 KB)   HTML
摘要: 对金发草(Pogonatherum paniceum)第3组LEA蛋白( PpLEA3 )基因两个剪接体进行分析,并利用酿酒酵母表达系统分析两个剪接体在不同非生物胁迫的响应差异。以 PpLEA3 基因两个剪接体( PpLEA3.a 和PpLEA3.b )的重组载体pMD19-T- PpLEA3.a 和pMD19-T- PpLEA3.b 为模板,PCR法构建酵母表达载体pYES2- PpLEA3.a 和pYES2- PpLEA3.b ,并转化酿酒酵母细胞得到重组菌INV- PpLEA3.a 和INV- PpLEA3.b 。通过比较重组菌和对照菌(转空载体pYES2)在NaCl、NaHCO3、低温、干旱、UV胁迫下的恢复生长状况,结果表明两种重组菌胁迫后的生长情况明显好于对照菌,两个剪接体对非生物胁迫抵抗力的大小为: PpLEA3.a > PpLEA3.b 。两个剪接体在核酸序列上的差异导致了在蛋白亲水性和结构上的差异,最终导致了在抗逆能力方面的差异。
关键词: LEA3基因金发草可变剪接转基因酵母非生物胁迫    
Abstract: It was to analyze the sequence of Pogonatherum paniceum group 3 LEA proteins alternatively spliced isoforms, and to detect the abiotic stresses tolerance of PpLEA3 spliced isoforms. The two spliced isoforms of PpLEA3 gene were amplified by PCR reaction using the plasmids pMD19-T- PpLEA3.a and pMD19-T- PpLEA3.b as the templates, respectively. The yeast expression plasmid of pYES2- PpLEA3.a and pYES2- PpLEA3.b was constructed and then transformed into yeast to create recombinant INV- PpLEA3.a and INV- PpLEA3.b . Stress tolerance tests showed that LEA3 yeast transformants exhibited a higher survival rates than the control transformants under salt (NaCl), NaHCO3, freezing, drought and ultraviolet radiation. PpLEA3.a has stronger abiotic stresses tolerance than PpLEA3.b . The nucleic acid sequence of two splicing isoforms have different protein hydrophilicity and structure which leading to differences in the stress tolerance.
Key words: LEA3gene    Pogonatherum paniceum    Alternative splicing    Transgenic yeast    Abiotic stress
收稿日期: 2012-03-13 出版日期: 2012-08-25
ZTFLH:  Q819  
通讯作者: 王胜华     E-mail: shwang200@yahoo.com.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李锐
王文国
范林洪
王胜华

引用本文:

李锐, 王文国, 范林洪, 王胜华. 金发草LEA 3 基因两个剪接体转化酿酒酵母的抗非生物胁迫功能分析[J]. 中国生物工程杂志, 2012, 32(08): 30-35.

LI Rui, WANG Wen-guo, FAN Lin-hong, WANG Sheng-hua. Abiotic Stress Tolerance Analysis Two Alternatively Spliced Isoforms of LEA3 Gene from Pogonatherum paniceum in Yeast. China Biotechnology, 2012, 32(08): 30-35.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I08/30

[1] Ast G. How did alternative splicing evolve? Nature Reviews Genetics, 2004,5:773-782.
[2] Tazi J, Bakkour N Stamm. Alternative splicing and disease. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2009,1792 (1):14-26.
[3] Dircksen H. Insect ion transport peptides are derived from alternatively spliced genes and differentially expressed in the central and peripheral nervous system. Journal of Experimental Biology, 2009,212(3):401-412.
[4] 曾纪晴, 张明永. 可变剪接在植物逆境相关基因表达调控中的作用. 植物生理学通讯, 2006,42(6):1005-1014. Zeng J Q, Zhang M Y. The role of alternative splicing in the regulation of plant stress-associated gene expression. Plant Physiology Communications, 2006,42(6):1005-1014.
[5] Dure L. A repeating 11-mer amino acid motif and plant desiccation. Plant J, 1993,3:363-369.
[6] Garay-Arroyo A, Colmenero-Flores J M, Garciarrubio A, et al. Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem, 2000,275:5668-5674.
[7] Wise M J, Tunnacliffe A. POPP the question: what do LEA proteins do? Trends Plant Sci, 2004,9:13-17.
[8] Wise M J, LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinform, 2003,4:52.
[9] Liu Y, Zheng Y. PM2, a group 3 LEA protein from soybean, and its 22-mer repeating region confer salt tolerance in Escherichia coli. Biochem Biophys Res Commun, 2005,331:325-332.
[10] Tunnacliffe A, Wise M J. The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007,94:791-812.
[11] Gellissen G, Melber K, Janowicz Z A, et al. Heterologous protein production in yeast.Anton Van Leeuwenhock, 1992,62:79-93.
[12] 王文国. 金发草LEA3基因与水稻Rad9基因的选择性剪接与基因功能研究. 成都:四川大学,生命科学学院,2010. Wang W G. Alternative splicing and gene functional analysis of LEA3 gene in Pogonatherum paniceum and Rad9 gene in rice. Chengdu:Sichuan University, College of Life Science, 2010.
[13] 邓成菊, 张建斌, 贾彩红, 等. 香蕉乙二醛酶基因增强酿酒酵母对非生物胁迫抵抗能力的研究. 中国生物工程杂志, 2010, 30(8):22-26. Deng C J, Zhang J B, Jia C H, et al. Enhancement of tolerance to abiotic stress of Saccharomyces cerevisiae transformed by a gene encoding glyoxalase from banana. China Biotechnology, 2010,30(8):22-26.
[14] Ginger A S, William R, Marcotte J. The wheat LEA protein Em function as an osmoprotective molecule Sacharomyces cerevisiae. Plant Mol Biol, 1999, 39(1):117-128.
[15] Gal Z T, Glazer I, Koltai H. An LEA group 3 family member is survival of C. elegans during exposure to stress. FEBS Lett, 2004, 577:21-26.
[16] 汤晓倩, 于丽霞, 武晓璐, 等. 第三组胚胎晚期丰富蛋白lea3基因研究概述. 生命科学, 2010,22(6):551-555. Tang X Q, Yu L X, Wu X L, et al. Research advance in the group three of late-embryogenesis-abundant proteins and genes. Chinese Bulletin of Life Sciences, 2010,22(6):551-555.
[17] Wang B F, Wang Y C, Zhang D W, et al. Verification of the resistance of a LEA gene from Tamarix expression in Saccharomyces cerevisiae to abiotic stresses. Journal of Forestry Research, 2008,19(1):58-62.
[18] 郭小勤, 李德葆.植物前体mRNA的选择性剪接.农业生物技术学报,2006,14(5):809-815. Guo X Q, Li D B. Pre-mRNA alternative splicing in plants. Journal of Agriculture Biotechnology,2006,14(5):809-815.
[1] 张雪, 陶磊, 乔晟, 杜秉昊, 郭长虹. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色[J]. 中国生物工程杂志, 2017, 37(3): 92-98.
[2] 于秀敏, 岳文冉, 张燕娜, 杨飞芸, 王瑞刚, 李国婧, 杨杞. 异源表达CkLEA1基因增强了拟南芥对非生物胁迫的耐受性[J]. 中国生物工程杂志, 2016, 36(10): 28-34.
[3] 高飞, 周婧, 刘晓彤, 李成磊, 姚慧鹏, 赵海霞, 吴琦. 苦荞锌指蛋白基因FtLOL1的克隆及其对非生物胁迫的应答[J]. 中国生物工程杂志, 2015, 35(8): 44-50.
[4] 李美玉, 李锐, 于敏, 王胜华, 陈放. 根癌农杆菌介导的金发草遗传转化条件的优化[J]. 中国生物工程杂志, 2013, 33(1): 41-46.
[5] 万丙良, 査中萍, 杜雪树. 水稻热激转录因子基因在植物激素和非生物环境胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2010, 30(10): 22-32.
[6] 万丙良 査中萍 杜雪树. 水稻热激转录因子基因在植物激素和非生物环境胁迫条件下的表达谱分析[J]. 中国生物工程杂志, 2010, 30(10): 0-0.
[7] 邓成菊 张建斌 贾彩红 金志强 徐碧玉. 香蕉乙二醛酶基因增强酿酒酵母对非生物胁迫抵抗能力的研究[J]. 中国生物工程杂志, 2010, 30(08): 22-26.
[8] 边鸣镝,邓川,白忠义. 玉米类受体蛋白激酶基因ZmLRRPK1的cDNA克隆与表达分析[J]. 中国生物工程杂志, 2009, 29(07): 33-36.
[9] 殷桂香,佘茂云,高翔,王瑾,叶兴国. 植物果聚糖合成酶基因克隆及特性分析[J]. 中国生物工程杂志, 2009, 29(02): 125-133.