Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (08): 100-106    
综述     
荧光假单胞菌抗生性代谢产物合成相关基因的研究现状
杨毅, 李治, 高玲霞, 孙燕
陕西师范大学生命科学学院 西安 710062
The Antibiotic Metabolites Genes of Pseudomonas fluorescens
YANG Yi, LI Zhi, GAO Ling-xia, SUN Yan
College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
 全文: PDF(564 KB)   HTML
摘要: 荧光假单胞菌(Pseudomonas fluorescens)是一种重要的植物根际促生菌,它能够产生藤黄绿脓菌素、2,4-二乙酰基藤黄酚、硝吡咯菌素、吩嗪-1-羧酸等抗生性次级代谢产物,可抑制多种病原物,在农作物土传病害的生物防治研究中具有重要意义。总结了荧光假单胞菌中已确立的抗生性次级代谢产物的合成机制,重点阐述了相关基因的结构、功能,以及利用生物工程技术对荧光假单胞菌进行遗传操作的最新进展,同时对荧光假单胞菌在生物防治中的应用和其作为生防菌剂的前景进行了展望。
关键词: 荧光假单胞菌植物根际促生菌抗生性次级代谢产物功能基因生物防治    
Abstract: Pseudomonas fluorescens is an important kind of plant growth-promoting rhizobacteria (PGPR). It can produce many secondary metabolites, such as pyoluteorin, 2, 4-diacetylphloroglucinol, pyrrolnitrin and phenazine-1-carboxyl acid. These antibiotics play a major role in suppression of many pathogens.The synthesis mechanisms of the secondary metabolites in Pseudomonas fluorescens, especially the structures and functions of the related genes were summarized. At the same time, the applications of Pseudomonas fluorescens in biological control are presented.
Key words: Plant growth promoting rhizobacteria (PGPR)    Antibiotic metabolites    Pseudomonas fluorescens    Functional genes    Biological control
收稿日期: 2012-03-23 出版日期: 2012-08-25
ZTFLH:  Q819  
基金资助: 陕西省自然科学基础研究计划(SJ08-ZT08)、中央高校基本科研业务费专项资金(GK200902030,GK200902031)资助项目
通讯作者: 孙燕     E-mail: mmbiolab@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨毅
李治
高玲霞
孙燕

引用本文:

杨毅, 李治, 高玲霞, 孙燕. 荧光假单胞菌抗生性代谢产物合成相关基因的研究现状[J]. 中国生物工程杂志, 2012, 32(08): 100-106.

YANG Yi, LI Zhi, GAO Ling-xia, SUN Yan. The Antibiotic Metabolites Genes of Pseudomonas fluorescens. China Biotechnology, 2012, 32(08): 100-106.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I08/100

[1] 陈雪,赵克明. 土传病害生物防治微生物的研究进展.现代农业,2011,7: 34-35. Chen X, Zhao K M. Progress in studies on biological control of soil mediated diseases. Modern Agriculture, 2011, 7: 34-35.
[2] 胡燕梅,杨龙. 利用微生物防治植物病害的研究进展. 中国生物防治,2006,22(增刊): 190-193. Hu Y M, Yang L. Biological control of plant pathogens with microorganism. Chinese Journal of Biological Control, 2006, 22: 190-193.
[3] 荣良燕,姚拓,赵桂琴,等. 产铁载体PGPR菌筛选及其对病原菌的拮抗作用. 植物保护,2011,3(1): 59-64. Rong L Y, Yao T, Zhao G Q,et al. Screening of siderophore-producing PGPR bacteria and their antagonism against the pathogens. Plant Protection, 2011, 3(1): 59-64.
[4] 殷士学,康贻军,程洁,等. 植物根际促生菌作用机制研究进展. 应用生态学报,2010, 21(1): 232-238. Yin S X, Kang Y J, Cheng J,et al. Action mechanisms of plant growth-promoting rhizobacteria. Chinese Journal of Applied Ecology, 2010, 21(1): 232-238.
[5] 杨海君,谭周进,肖启明,等. 假单胞菌的生物防治作用研究. 中国生态农业学报,2004,12(3): 158-161. Yang H J, Tan Z J, Xiao Q M, et al. Biocontrol functions of Pseudomonad. Chinese Journal of Eco-Agriculture, 2004, 12(3): 158-161.
[6] Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Microbiology, 2005, 3(4):307-319.
[7] 张伟琼,聂明,肖明. 荧光假单胞菌生防机理的研究进展. 生物学杂志,2007,6(3): 9-11. Zhang W Q, Nie M, Xiao M. Advances in biocontrolmechanism of Pseudomonas fluorescens. Journal of Biology, 2007, 6(3): 9-11.
[8] 王平,李慧,肖明,等. 荧光假单胞菌株P13分泌铁载体抑制油菜菌核病菌. 上海师范大学学报(自然科学版),2010,39(2): 200-203. Wang P, Li H, Xiao M, et al. Siderophores produced by Pseudomonas fluorescens P13 against Sclerotinia sclerotiorum. Journal of Shanghai Normal University, 2010, 39(2): 200-203.
[9] 周洪友,张俊祥,唐文华,等. 2,4-二乙酰基藤黄酚产生菌在番茄根部的定殖及对番茄青枯病的防治. 华北农学报,2004,19(4): 105-108. Zhou H Y, Zhang J X, Tang W H, et al. Preliminary exploration of bacteria that produce 2, 4-DAPG colonize the rhizoplance and control the tomato southern bacterial wilt. Journal of North China Agriculture, 2004, 19(4): 105-108.
[10] Ramette1 A, Moenne-Loccoz Y, Defago G, et al. Geneticdiversityand biocontrol potential of fluorescent pseudomonads producing phloroglucinolsand hydrogen cyanide from Swis soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black rootrot of tobacco. FEMS Microbiol Ecol, 2006, 55(3): 369-381.
[11] 雷阳,曾延松,汪琳. 荧光假单胞菌的生物防治机理. 贵州农业科学,2002,30(5): 46-47. Lei Y, Zeng Y S, Wang L. Biological control mechanism of Pseudomonas fluorescent. Guizhou Agricultural Sciences, 2002, 30(5): 46-47.
[12] 何延静,胡洪波,许煜泉,等. 新型生物农药藤黄绿脓菌素. 农药,2006,45(3): 155-157. He Y J, Hu H B, Xu Y Q, et al. A new biological pesticide, Pyoluteorin. Agrochemicals, 2006, 45(3): 155-157.
[13] Zhang J F, Wang W, Lu X H, et al. The stability and degradation of a new biological pesticide, pyoluteorin. Society of Chemical Industry, 2010, 66(3): 248-252.
[14] Whistler C A, Stockwell V O, Loper J E. Lon protease influences antibiotic production and UV tolerance of Pseudomonas fluorescens Pf-5. Appl Environ Microbiol, 2000, 66(7): 2718-2725.
[15] Nowak-Thompson B, Chaney N, Wing J S, et al. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol, 1999, 181(7): 2166-2174.
[16] Susanl F, Halbrendt J M, Carta L K, et al. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterial-feeding nematodes. Journal of Nematology, 2009, 41(4): 274-280.
[17] Latz E, Rall B C, Scheu S, et al. Plant diversity improves protection against soil-borne pathogens by fostering antagonistic bacterial communities. Journal of Ecology, 2011, 184(11): 3008-3016.
[18] Yang F, Cao Y J. Biosynthesis of phloroglucinol compounds in microorganisms. Appl Microbiol Biotechnol, 2012, 93(2): 487-495.
[19] Dandurishvili N, Toklikishvili N, Ovadis M, et al. Broad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. Journal of Applied Microbiology, 2011, 110(1): 341-352.
[20] Hammer P E, Hill D S, Lam S T, et al. Four Genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Applied and Environmental Microbiology, 1997, 63(6): 2147-2154.
[21] Kirner S, Hammer P E, Hill D S, et al. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. Journal of Bacteriology, 1998, 180(7): 1939-1943.
[22] Keum Y S, Zhu Y Z, Kim J H. Structure-inhibitory activity relationships of pyrrolnitrin analogues on its biosynthesis. Applied Microbiology and Biotechnology, 2011, 89(3): 781-789.
[23] Mavrodi D V, Ksenzenko V N, Bonsall R F, et al. A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol, 1998, 180(9):2541-2548.
[24] McDonald M, Mavrodi D V, Thomashow L S, et al. Phenazine biosynthesis in Pseudomonas fluorescens:branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. J Am Chem, 2001, 123(38): 9459-9460.
[25] El-Sayed A K, Hothersall J, Cooper S M, et al. Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chemistry & Biology, 2003, 10(5): 419-430.
[26] Gurney R, Thomas C M. Mupirocin: biosynthesis, special features and applications of an antibiotic from a gram-negative bacterium. Appl Microbiol Biotechnol, 2011, 90(1): 11-21.
[27] Mercado-Blanco J, van der Drift K M, Olsson P E, et al. Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore Pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. Journal of Bacteriology, 2001, 183(6): 1909-1920.
[28] Youard Z A, Mislin G L, Majcherczyk P A, et al. Pseudomonas fluorescens CHA0 produces enantio-pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. Journal of Biological Chemistry, 2007, 282(49): 35546-35553.
[29] Youard Z A, Wenner N, Reimmann C. Iron acquisition with the natural siderophore enantiomers pyochelin and enantio-pyochelin in Pseudomonas species. Biometals, 2011, 24(3): 513-522.
[30] Moon C D, Zhang X X, Matthijs S, et al. Genomic, genetic and structural analysis of overdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25. BMC Microbiology, 2008, 8(7): 1-13.
[31] Lamont I L, Martin L W. Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology, 2003, 149(Pt4): 833-842.
[32] Laville J, Blumer C, Von Schroetter C, et al. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0. J Bacteriol, 1998, 180(12): 3187-3196.
[33] 王震,何幸,许煜泉,等. 温度对假单胞rsmA突变株M-18R合成Plt和PCA的区别性影响. 生物工程学报,2005,21(1): 118-122. Wang Z, He X, Xu Y Q, et al. Differential effect of temperature on Plt and PCA synthesis in a rsmA inactivated mutant strain of Pseudomonas sp. M-18. Sheng Wu Gong Cheng Xue Bao, 2005, 21(1): 118-122.
[34] Bainton N J, Lynch J M, Naseby D, et al. Survival and ecological fitness of Pseudomonas fluorescens genetically engineered with dual biocontrol mechanisms. Microbiol Ecology, 2004, 48(3): 349-357.
[35] 周宇平,吴小刚,张力群,等. 荧光假单胞菌2P24中phlF基因对抗生素2, 4-二乙酰基间苯三酚产生的影响. 植物病理学报,2010,40(2) : 144-150. Zhou Y P,Wu X G, Zhang L Q, et al. Effect of gene phlF on 2, 4 -diacetylphloroglucinol production in Pseudomonas fluorescens 2P24. Acta Phytopathologica Sinica, 2010, 40(2) : 144-150.
[1] 陈亚超,李楠楠,刘子迪,胡冰,李春. 源于甘草内生菌的甘草酸合成相关功能基因的宏基因组挖掘*[J]. 中国生物工程杂志, 2021, 41(9): 37-47.
[2] 孙瑶,乔梦伟,刘诗宇,宫殿良,宋金柱. 乳杆菌对致病假单胞菌的抑制作用研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 103-109.
[3] 吴梦, 刘作华, 林保忠, 兰国成, 邹贤刚, 葛良鹏. 转基因猪研究进展[J]. 中国生物工程杂志, 2015, 35(3): 92-98.
[4] 陈勇, 朱廷恒, 汪琨, 崔志峰. 提高木霉逆境适应性与生物防治效果的基因工程研究进展[J]. 中国生物工程杂志, 2012, 32(6): 120-124.
[5] 刘菊华, 徐碧玉, 张建平, 贾彩红, 王甲水, 张建斌, 金志强. 香蕉基因组测序及胁迫相关功能基因研究进展[J]. 中国生物工程杂志, 2012, 32(03): 110-114.
[6] 韩文霞 陈立 陈亮 巩洁 陈五岭. 番茄灰霉病拮抗菌株初步鉴定及通过导入几丁质酶基因提高其生防效果[J]. 中国生物工程杂志, 2010, 30(02): 71-76.
[7] 邵楠,王虹,李荣贵. 荧光假单胞菌天冬氨酸转氨酶的基因克隆及其在大肠杆菌中的表达[J]. 中国生物工程杂志, 2009, 29(04): 88-92.
[8] 李晶,杨谦,赵丽华,王玉霞. 生防枯草芽孢杆菌B29菌株抗菌物质的初步研究[J]. 中国生物工程杂志, 2008, 28(2): 59-65.
[9] 刘红涛,冯书营,陈涛,薛乐勋. 杜氏盐藻分子生物学最新进展及展望[J]. 中国生物工程杂志, 2007, 27(10): 113-118.
[10] 张莹,杨耀武,王健伟,,屈建国,洪涛. RNA干扰文库在功能基因组学研究中的发展及应用[J]. 中国生物工程杂志, 2006, 26(07): 84-89.
[11] 信吉阁,曾养志,韩佃刚,王晓洪. 功能基因组学及其研究进展[J]. 中国生物工程杂志, 2006, 26(0): 162-165.
[12] 庄金秋, 杨丽梅, 贾杏林. 功能基因组学研究概述[J]. 中国生物工程杂志, 2005, 25(S1): 204-209.
[13] 郑卉, 李良智, 葛志强, 元英进. 代谢物组学及其在微生物研究中的应用[J]. 中国生物工程杂志, 2005, 25(5): 6-9.
[14] 杨金奎, 梁连铭, 李娟, 张克勤. 食线虫真菌侵染性胞外酶和生防应用[J]. 中国生物工程杂志, 2005, 25(10): 72-77.
[15] 谭彩霞, 张亚芳, 陈宗祥, 殷跃军, 纪雪梅, 杨勇, 潘学彪. 两个抗水稻纹枯病主效数量基因的鉴定[J]. 中国生物工程杂志, 2004, 24(4): 79-80.