Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2012, Vol. 32 Issue (08): 1-8    
研究报告     
RIOK3促进了caspase-10对PAK2的酶解激活
林颖, 李璞, 单敬轩, 陈晓静, 施慧莉, 霍克克
复旦大学生命科学学院遗传学研究所 遗传工程国家重点实验室 上海 200433
RIOK3 Promotes the Cleavage-activation of Caspase-10 on PAK2
LIN Ying, LI Pu, SHAN Jing-xuan, CHEN Xiao-jing, SHI Hui-li, HUO Ke-ke
State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
 全文: PDF(1450 KB)   HTML
摘要: RIO3为非典型激酶RIO家族的成员之一,仅在多细胞真核生物中出现,为研究RIOK3蛋白的功能,以其作为诱饵蛋白对成人肝cDNA文库进行酵母双杂交筛选,得到其相互作用蛋白PAK2,并通过细胞内免疫共沉淀和免疫荧光共定位实验验证了该相互作用。实时定量PCR和免疫印迹检测结果显示,RIOK3能够在蛋白水平上降低PAK2表达量。通过CCK-8和细胞凋亡检测,发现二者共表达可以抑制增殖并促进凋亡,并且这一促凋亡效应可以被caspase-10的无酶活最短剪切本caspase-10G所抑制。实验结果显示,RIOK3可能促进了caspase-10对PAK2的酶解,在PAK2的酶解激活途径中发挥重要作用。
关键词: RIOK3PAK2酵母双杂交细胞凋亡酶解激活    
Abstract: RIO3, a member of atypical protein kinase, is only discovered in multicellular eukaryotes. The human liver cDNA library was screened with pDBLeu-RIOK3 as bait plasmid by yeast two-hybrid system and PAK2 was identified as a RIOK3 interactive protein. The interaction was confirmed by co-immunoprecipitation assays and immunofluorescent localization experiments. Results of real-time quantitative PCR and Western blot showed that RIOK3 can reduce the amount of PAK2 at protein expression level. CCK-8 and apoptosis detection experiment showed that co-expression of RIOK3 and PAK2 can inhibit cell proliferation and promote apoptosis,and the apoptotic effect can be inhibited by caspase-10G, which is the minimum isoform of caspase-10 and had no enzyme activity. The experimental results showed that RIOK3 may promote cleavage of caspase-10 on PAK2 and play an important role in the PAK2 cleavage-activation pathway.
Key words: RIOK3    PAK2    Yeast two-hybrid system    Cell apoptotic    Cleavage-activation
收稿日期: 2012-04-09 出版日期: 2012-08-25
ZTFLH:  Q819  
基金资助: 国家高技术研究发展计划(2006AA02A310)、国家科技重大专项(2008ZX10003-006,2009ZX09301-011)、国家重点基础研究发展计划(2010CB912603)资助项目
通讯作者: 霍克克     E-mail: kkhuo@fudan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
林颖
李璞
单敬轩
陈晓静
施慧莉
霍克克

引用本文:

林颖, 李璞, 单敬轩, 陈晓静, 施慧莉, 霍克克. RIOK3促进了caspase-10对PAK2的酶解激活[J]. 中国生物工程杂志, 2012, 32(08): 1-8.

LIN Ying, LI Pu, SHAN Jing-xuan, CHEN Xiao-jing, SHI Hui-li, HUO Ke-ke. RIOK3 Promotes the Cleavage-activation of Caspase-10 on PAK2. China Biotechnology, 2012, 32(08): 1-8.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2012/V32/I08/1

[1] Angermayr M, Bandlow W. The type of basal promoter determines the regulated or constitutive mode of transcription in the common control region of the yeast gene pair GCY1/RIO1. J Biol Chem, 1997, 272(50): 31630-31635.
[2] Leonard C J, Aravind L, Koonin E V. Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. Genome Res, 1998, 8(10): 1038-1047.
[3] Angermayr M, Roidl A, Bandlow W. Yeast Rio1p is the founding member of a novel subfamily of protein serine kinases involved in the control of cell cycle progression. Mol Microbiol, 2002, 44(2): 309-324.
[4] Krupa A, Srinivasan N. Lipopolysaccharide phosphorylating enzymes encoded in the genomes of Gram-negative bacteria are related to the eukaryotic protein kinases. Protein Sci, 2002, 11(6): 1580-1584.
[5] Anaya P, Evans S C, Dai C, et al. Isolation of the Aspergillus nidulans sudD gene and its human homologue. Gene, 1998, 211(2): 323-329.
[6] LaRonde-LeBlanc N, Wlodawer A. A family portrait of the RIO kinases. J Biol Chem, 2005, 280(45): 37297-37300.
[7] LaRonde-LeBlanc N, Wlodawer A. The RIO kinases: an atypical protein kinase family required for ribosome biogenesis and cell cycle progression. Biochim Biophys Acta, 2005, 1754(1-2): 14-24.
[8] Geerlings T H, Faber A W, Bister M D, et al. Rio2p, an evolutionarily conserved, low abundant protein kinase essential for processing of 20 S Pre-rRNA in Saccharomyces cerevisiae. J Biol Chem, 2003, 278(25): 22537-22545.
[9] Scaffidi C, Krammer P H, Peter M E. Isolation and analysis of components of CD95 (APO-1/Fas) death-inducing signaling complex. Methods, 1999, 17(4): 287-291.
[10] Shan J, Wang P, Zhou J, et al. RIOK3 interacts with caspase-10 and negatively regulates the NF-kappaB signaling pathway. Mol Cell Biochem, 2009, 332(1-2): 113-120.
[11] Vanrobays E, Gelugne J P, Gleizes P E, et al. Late cytoplasmic maturation of the small ribosomal subunit requires RIO proteins in Saccharomyces cerevisiae. Mol Cell Biol, 2003, 23(6): 2083-2095.
[12] Luo S, Rubinsztein D C. Huntingtin promotes cell survival by preventing Pak2 cleavage. J Cell Sci, 2009, 122(Pt 6): 875-885.
[13] Kumar R, Gururaj A E, Barnes C J. p21-activated kinases in cancer. Nat Rev Cancer, 2006, 6(6): 459-471.
[14] Bokoch G M. Biology of the p21-activated kinases. Annu Rev Biochem, 2003, 72:743-781.
[15] Walter B N, Huang Z, Jakobi R, et al. Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. J Biol Chem, 1998, 273(44): 28733-28739.
[16] Gatti A, Huang Z, Tuazon P T, et al. Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J Biol Chem, 1999, 274(12): 8022-8028.
[17] Jakobi R, McCarthy C C, Koeppel M A, et al. Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J Biol Chem, 2003, 278(40): 38675-38685.
[18] Fischer U, Stroh C, Schulze-Osthoff K. Unique and overlapping substrate specificities of caspase-8 and caspase-10. Oncogene, 2006, 25(1): 152-159.
[19] Ng P W, Porter A G, Janicke R U. Molecular cloning and characterization of two novel pro-apoptotic isoforms of caspase-10. J Biol Chem, 1999, 274(15): 10301-10308.
[1] 毕博,张宇,赵慧. 酵母杂交系统在CRISPR/Cas9基因编辑系统脱靶率研究中的应用*[J]. 中国生物工程杂志, 2021, 41(6): 27-37.
[2] 朱永朝,陶金,任萌萌,熊燃,何亚琴,周瑜,卢震辉,杜勇,杨芝红. 自噬抑制肿瘤坏死因子α诱导人胎盘胎儿来源间充质干细胞发生凋亡 *[J]. 中国生物工程杂志, 2019, 39(9): 62-67.
[3] 刘叶,潘玥,郑魏,胡晶. miR-186-5p在酒精诱导的心肌细胞中高表达并通过靶基因XIAP调控细胞凋亡水平 *[J]. 中国生物工程杂志, 2019, 39(5): 53-62.
[4] 代立婷, 吴忠南, 黄翔, 杨杰, 曾慧兰, 王国才, 蒋建伟. 卤地菊乙醇提取物W40单体诱导GLC-82细胞凋亡的分子机制研究[J]. 中国生物工程杂志, 2017, 37(8): 1-7.
[5] 徐安健, 李艳萌, 李斯文, 乌姗娜, 张蓓, 黄坚. PHP14沉默对肺癌细胞凋亡的影响及其机制[J]. 中国生物工程杂志, 2017, 37(7): 12-17.
[6] 王丹丹, 陈恬, 许亮国. Yeast two-hybrid方法筛选VISA相互作用蛋白[J]. 中国生物工程杂志, 2017, 37(6): 63-69.
[7] 白欣艳, 温丽敏, 王玉晶, 王海龙, 解军, 郭睿. ANKRD49通过上调Bcl-xL的表达抑制UV诱导GC-1细胞的凋亡[J]. 中国生物工程杂志, 2017, 37(4): 40-47.
[8] 万春红, 张志, 李圣纳, 彭以元, 许亮国. TRAF7的研究进展[J]. 中国生物工程杂志, 2016, 36(3): 93-101.
[9] 陈娜子, 姜潮, 李校堃. 内质网应激与疾病[J]. 中国生物工程杂志, 2016, 36(1): 76-85.
[10] 邱华丽, 穰杰, 丁学知, 胡胜标, 张友明, 朱道奇, 夏立秋. 苦瓜MAP30蛋白的原核表达及其生物活性研究[J]. 中国生物工程杂志, 2014, 34(06): 40-46.
[11] 韩笑, 李娜, 杜培革. 抗肿瘤多肽研究进展[J]. 中国生物工程杂志, 2013, 33(6): 93-98.
[12] 张曦, 刘北忠, 高艳军, 黎亮, 高远梅, 胡秀秀, 马鹏鹏, 钟梁. 干扰 GINS2 表达对HL60细胞增殖和凋亡的影响[J]. 中国生物工程杂志, 2013, 33(3): 41-46.
[13] 魏东, 邹浩, 王琳, 王文举, 骆志玲, 张小文. 靶向miRNA干扰Bmi-1诱导胆囊癌细胞凋亡及上调Caspase-3表达的研究[J]. 中国生物工程杂志, 2013, 33(12): 1-8.
[14] 郭芬, 林丕容, 李月琴, 苏宪礼, 王丁丁, 周天鸿. BRPF1及其新型转录本BRPF2与RHOX5蛋白间的相互作用[J]. 中国生物工程杂志, 2012, 32(09): 15-21.
[15] 李尧锋, 张楠阳, 赵永聚. 酵母双杂交中诱饵蛋白载体的构建与鉴定方法[J]. 中国生物工程杂志, 2012, 32(02): 123-127.