Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (5): 75-80    
研究报告     
渗透压在葡萄酒酵母代谢中的调控作用
谢涛, 张儒
湖南工程学院化学化工学院 湘潭 411104
Osmotic Press Plays an Important Role in Metabolic Control of Saccharomyces ellipsoideus
XIE Tao, ZHANG Ru
Department of Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
 全文: PDF(1235 KB)   HTML
摘要:

以磷酸丙糖异构酶部分缺失突变株做对比,研究了渗透压对葡萄酒酵母发酵过程中甘油合成与挥发酸生成的调节作用。结果表明:渗透压对野生型葡萄酒酵母中存在的磷酸二羟丙酮(DHAP)与3-磷酸甘油醛(GA3P)平衡具有调节作用,能使平衡向磷酸二羟丙酮方向迁移以合成更多的甘油,而当磷酸丙糖异构酶部分缺失时渗透压对这一平衡基本不起作用;在相同条件下,磷酸丙糖异构酶部分缺失突变株较之葡萄酒酵母野生株的甘油合成量大大减少,其胞内主要积累3-磷酸甘油醛从而更多地生成酵解代谢产物。因此,在适当高渗环境中,葡萄酒酵母野生株胞内积累磷酸二羟丙酮有利于甘油与挥发酸比例的调控。

关键词: 渗透压葡萄酒酵母代谢调控磷酸丙糖异构酶    
Abstract:

Using triose phosphate isomerase deficient (tpiΔ) mutant of Saccharomyces ellipsoideus as the control, the regulation of osmotic press on the balance between glycerol production and volatile acid formation was first studied. The results demonstrated that there existed the control of osmotolerance on the balance between dihydroxyacetone phosphate (DHAP) and glyceraldehyde-3-phosphate (GA3P) in wild S. ellipsoideus and the suitable high osmotolerance can transport metabolic flux from GA3P to DHAP to produce much glycerol. However, the control of osmotolerance didn't exist in tpiΔ mutant of S. ellipsoideus. In comparison with wild S. ellipsoideus, the tpiΔ mutant greatly reduced the yield of glycerol production and much created glycolytic metabolites because of GA3P accumulation at the same conditions. Therefore, the conclusion was made that, at the suitable high osmotolerance, DHAP accumulation of wild S. ellipsoideus would be helpful to regulate the ratio of glycerol to volatile acid.

Key words: Osmotolerance    Saccharomyces ellipsoideus    Metabolic regulation    Triosephosphate isomerise(TPI)
收稿日期: 2010-10-19 出版日期: 2011-05-27
ZTFLH:  TQ92  
基金资助:

湖南省自然科学基金资助项目(07JJ6031)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

谢涛, 张儒. 渗透压在葡萄酒酵母代谢中的调控作用[J]. 中国生物工程杂志, 2011, 31(5): 75-80.

XIE Tao, ZHANG Ru. Osmotic Press Plays an Important Role in Metabolic Control of Saccharomyces ellipsoideus. China Biotechnology, 2011, 31(5): 75-80.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I5/75


[1] Blomberg A, Adler L. Roles of glycerol and glycerol 3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol, 1989, 171: 1087-1092.


[2] Blomberg A. Global changes in protein synthesis during adaptation of the yeast Saccharomyces cerevisiae to 0.7 M NaCl. J Bacteriol, 1995, 177:3563-3572.


[3] Norbeck J, Blomberg A. Protein expression durin exponential growth in 0.7 M NaCl medium of Saccharomyces cerevisiae. FEMS Microbiol Lett, 1996, 17:653-662.


[4] Miralles V J, Serrano R. A genomic locus in Saccharomyces cerevisiae with four genes upregulated by osmotic stress. Mol Microbiol, 1995, 17: 653-662.


[5] Compagno C, Boschi F, Ranzi B M. Glycerol production in a triose phosphate isomerase deficient mutant of Saccharomyces cerevisiae. Biotechnol Prog, 1996, 12: 591-595.


[6] Ansell R, Adler L. The effect of iron limitation on glycerol production and expression of the isogenes for NAD+-dependent glycerol 3-phosphate dehydrogenase in Saccharomyces cerevisiae. FEBS Lett, 1999, 461: 173-177.


[7] Zhang Y G, Shen W, Rao Z M, et al. Deletion of the Cg TPI gene encoding triose phosphate isomerase of Candida glycerinogenes inhibits the biosynthesis of glycerol. Current Microbiology, 2007, 55: 147-151.


[8] Wang F Z, Shen W, Rao Z M, et al. Construction of a flocculationg yeast for fuel ethanol production. Biotechnology Letterst, 2008, 30: 97-102.


[9] Liu H J, Liu D H, Zhong J J. Oxygen limitation improves glycerol production by Candida krusei in a bioreactor. Process Biochem, 2004, 39: 1899-1902.


[10] Xie T, Fang H Y, Zhuge B, et al. Promotional mechanism of high glycerol productivity in the aerobic batch fermentation of Candida glycerinogenes after feeding several amino acids. Applied Biochemistry and Microbiology, 2009, 45 (3): 338-343.


[11] van Hoek P, van Dijken J P, Pronk J T. Regulation of fermentative capacity and levels of glycolytic enzymes in chemostat cultures of Saccharomyces cerevisiae. Enzyme Microb Tech, 2000, 26: 724-736.


[12] Postma E, Verduyn C, Scheffers W A. Enzymic analysis of the crabtree effect in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Appl Env Microbiol, 1989, 53 (1): 468-477.


[13] Braford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.

[1] 薛艳婷,吴胜波,徐程杨,袁博鑫,杨书鹃,刘家亨,乔建军,朱宏吉. 群体感应在动态代谢调控中的研究进展 *[J]. 中国生物工程杂志, 2020, 40(6): 74-83.
[2] 吴庆, 刘慧燕, 方海田, 何建国, 贺晓光, 于丽男, 王梦娇. 解淀粉芽孢杆菌高效合成胞苷的代谢调控机制及育种策略[J]. 中国生物工程杂志, 2015, 35(9): 122-127.
[3] 于水燕, 赵权宇, 史吉平. 固碳产油微藻的基因工程改造[J]. 中国生物工程杂志, 2012, 32(12): 117-124.
[4] 谢涛 张儒. 渗透压在葡萄酒酵母代谢中的调控作用[J]. 中国生物工程杂志, 2011, 31(05): 0-0.
[5] 黎志勇 纪晓俊 丛蕾蕾 聂志奎 彭超 高振 黄和. 发酵法生产γ-亚麻酸的研究进展[J]. 中国生物工程杂志, 2010, 30(09): 110-117.
[6] 年洪娟 陈丽梅 李昆志. Tn5转座突变技术在革兰氏阴性细菌分子遗传研究中的应用[J]. 中国生物工程杂志, 2009, 29(12): 114-118.
[7] 谢涛,方慧英,诸葛斌,诸葛健. 渗透压对产甘油假丝酵母甘油合成与胞内磷积累的影响[J]. 中国生物工程杂志, 2009, 29(04): 61-66.
[8] 张晓娟,窦文芳,许泓瑜,许正宏. 维生素对谷氨酸棒杆菌SYPS-062直接发酵合成L-丝氨酸的影响[J]. 中国生物工程杂志, 2007, 27(5): 50-55.
[9] 余秉琦, 诸葛健. 酵母细胞对高渗环境的适应与胞内甘油累积[J]. 中国生物工程杂志, 2003, 23(2): 25-28.
[10] 欧阳剑, 李家洋. 拟南芥色氨酸与吲哚乙酸生物合成的研究进展[J]. 中国生物工程杂志, 1998, 18(2): 2-11.
[11] LeRudulierD, valentineRC, 王业勤. 遗传工程在农业上的应用:渗透调节[J]. 中国生物工程杂志, 1983, 3(4): 41-45.