Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (5): 113-120    
综述     
HIV进入抑制剂的研究进展
张浩圆, 吴文言
中山大学生命科学学院 广州 510275
Research on HIV Entry Inhibitors
ZHANG Hao-yuan, WU Wen-yan
College of Life Sciences, Sun Yat-sen University,Guangzhou 510275, China
 全文: PDF(1139 KB)   HTML
摘要:

随着对HIV进入细胞过程的了解,各种进入抑制剂相继问世,目前主要有三大类:吸附抑制剂、辅助受体抑制剂和融合抑制剂。对其中具有代表性的进入抑制剂研究进展进行了介绍,一些进入抑制剂已经进入到了临床试验阶段,其中融合抑制剂T20在2003年便被FDA批准可同其他ARTs联合用于治疗HIV感染者,CCR5拮抗剂Maraviroc在2007年8月被FDA批准上市。

关键词: HIV抑制剂病毒进入    
Abstract:

In recent years, various kinds of HIV entry inhibitors have been invented with the discovery of the HIV entry process. They are divided into three main classes: attachment inhibitors, co-receptor binding inhibitors, and fusion inhibitors. The mechanism of action and structure of several important inhibitors are discussed. Many inhibitors are in advanced clinical trials. Especially, the fusion inhibitor T20 has been approved for the treatment of the HIV infected patients with other antiretroviral therapys,by FDA,in 2003 and the CCR5 inhibitor maraviroc has been approved by FDA, in 2007.

Key words: HIV    Inhibitor    Viral entry
收稿日期: 2010-12-21 出版日期: 2011-05-27
ZTFLH:  Q81  
基金资助:

国家自然科学基金项目(30772722)、广州市科技计划项目(2009J1-C541)资助项目

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张浩圆, 吴文言. HIV进入抑制剂的研究进展[J]. 中国生物工程杂志, 2011, 31(5): 113-120.

ZHANG Hao-yuan, WU Wen-yan. Research on HIV Entry Inhibitors. China Biotechnology, 2011, 31(5): 113-120.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I5/113


[1] Huang L M, Jeang K T. HIV-1 at age 25: some thoughts for Taiwan and China. J Formos Med Assoc, 2008, 107:907-908.

[2] Louie M, Markowitz M. Goals and milestones during treatment of HIV-1 infection with antiretroviral therapy: A pathogenesis-based perspective. Antiviral Res, 2002, 55(1):15-25.

[3] Tilton J C, Doms R W. Entry inhibitors in the treatment of HIV-1 infection. Antiviral Research, 2010, 81:91-100.

[4] Moore J P, Doms R W. The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci USA, 2003, 100 (19): 10598-10602.

[5] Callaha L N, Phelan M, Mallinson M, et al. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gp120-CD4 interactions. J Virol, 1991, 65(3):1543-1550.

[6] Fischetti L, Barry S M, Hope T J, et al. HIV-1 infection of human penile explant tissue and protection by candidate microbicides. Aids, 2009, 23:319-328.

[7] Xiong S, Fan J, Kitazato K. The antiviral protein cyanovirin-N: the current state of its production and applications. Appl Microbiol Biotechnol, 2010, 86:805-812.

[8] Jacobson J M, Israel R J, Lowy I, et al. Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542. Antimicrob Agents Chemother, 2004, 48(2):423-429.

[9] Kadow J, Wang H G, Lin P F. Small-molecule HIV-1 gp120 inhibitors to prevent HIV-1 entry: An emerging opportunity for drug development. Curr Opin Investig Drugs, 2006, 7(8):721-726.

[10] Jacobson, J M, Kuritzkes D R, Godofsky E, et al. Safety, Pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrobial Agents and Chemotherapy, 2009, 53(2):450-457.

[11] Vermeire K, Brouwers J, Herrewege Y V, et al. CADA, a Potential anti-HIV microbicide that specifically targets the cellular CD4 receptor. Current HIV Research, 2008, 6(3):246-256.

[12] Liu R, Paxton W A, Choe S, et al.Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell, 1996, 86:367-77.

[13] Huang C C, Lam S N, Acharya P, et al. Structures of the CCR5 N terminus and of a tyrosine-sulfatedantibody with HIV-1 gp120 and CD4. Science, 2007, 317:1930-1934.

[14] Simmons G, Clapham P R, Picard L, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science, 1997, 276(5310):276-279.

[15] Polo S, Nardese V, De Santis C, et al. Enhancement of the HIV-1 inhibitory activity of RANTES by modification of the N-terminal region:Dissociation from CCR5 activation. Eur J Immunol, 2000, 30(11):3190-3198.

[16] Jacobson J M, Lalezari J, Thompson M A, et al. Phase 2a Study of the CCR5 Monoclonal Antibody PRO 140 Administered Intravenously to HIV-Infected Adults. Antimicrobial Agents and Chemotherapy, 2010, 54(10):4137-4142.

[17] Ji C, Zhang J, Dioszegi M, et al. CCR5 small molecule antagonists and monoclonal antibodies exert potent synergistic antiviral effects by co-binding to the receptor. Mol. Pharmacol,2007, 72:18-28.

[18] Seto M, Aikawa K, Miyamoto N, et al. Highly potent and orally active CCR5 antagonists as anti-HIV-1 agents: Synthesis and biological activities of 1-benzazocine derivatives containing a sulfoxide moiety. Journal of Medicinal Chemistry, 2006, 49(6):2037-2048.

[19] Cécile L T, Franoise G, Yongbiao G, et al. TAK-220, a novel small-molecule CCR5 antagonist, has favorable anti-human immunodeficiency virus interactions with other antiretrovirals in vitro. American Society for Microbiology, 2005, 49(8):3483-3485.

[20] Dorr P, Westby M, Dobbs S, et al. Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type1 activity. Antimicrobial Agents and Chemotherapy, 2005, 49(11):4721-4732.

[21] Tilton J C, Wilen C B, Didigu C A, et al. A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. J Virol, 2010, 84(20):10863-10876.

[22] Strizki J M, Tremblay C, Xu S, et al. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrobial Agents and Chemotherapy, 2005, 49(12):4911-4919.

[23] Robert A O, Hou Y, Lei B, et al. Clinical resistance to vicriviroc through adaptive V3 loop mutations in HIV-1 subtype D gp120 that alter interactions with the N-terminus and ECL2 of CCR5. Virology, 2010,400:145-155.

[24] Seibert C, Ying W, Gavrilov S, et al. Interaction of small molecule inhibitors of HIV-1 entry with CCR5. Virology, 2006,349(1):41-54.

[25] Zou Y R, Kottmann A H, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature, 1998, 393(6685):595-599.

[26] Arakaki R, Tamamura H, Premanathan M, et al. T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. J Virol, 1999, 73(2):1719-1723.

[27] Tamamura H, Xu Y, Hattori T, et al. A low-molecular-weight inhibitor against the chemokine receptor CXCR4: A strong anti-HIV peptide T140. Biochem Biophys Res Commun, 1998, 253(3):877-882.

[28] Fujii N, Oishi S, Hiramatsu K, et al. Molecular-size reduction of a potent CXCR4-chemokine antagonist using orthogonal combination of conformation- and sequence-based libraries. AngewChem Int Ed Engl, 2003, 42(28):3251-3253.

[29] Daelemans D, Schols D, Witvrouw M, et al. A second target for the peptoid Tat/transactivation response element inhibitor CGP64222: Inhibition of human immunodeficiency virus replication by blocking CXC-chemokine receptor 4-mediated virus entry. Mol Pharmacol, 2000, 57(1):116-124.

[30] Liles W C, Rodger E, Broxmeyer H E, et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion, 2005, 45: 295-300.

[31] Stone N D, Dunaway S B, Flexner C, et al. Multipledose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob Agents Chemother, 2007, 51(7):2351-2358.

[32] Murakami T, Kumakura S, Yamazaki T, et al. The novel CXCR4 antagonist KRH-3955 is an orally bioavailable and extremely potent inhibitor of human immunodeficiency virus type 1 infection: comparative studies with AMD3100. Antimicrob Agents Chemother, 2009, 53:2940-2948.

[33] Iwasaki Y, Akari H, Murakami T, et al. Efficient inhibition of SDF-1alpha-mediated chemotaxis and HIV-1 infection by novel CXCR4 antagonists. Cancer Sci, 2009, 100: 778-781.

[34] Magombedze G, Garira W, Mwenje, E. Modelling the immunopathogen- esis of HIV-1 infection and the effect of multidrug therapy: the role of fusion inhibitors in HAART. Math Biosci Eng, 2008, 5(3):485-504.

[35] Trottier B, Walmsley S, Reynes J, et al. Safety of enfuvirtide in combination with an optimized background of antiretrovirals in treatment-experienced HIV-1-infected adults over 48 weeks. J Acquir Immune Defic Syndr, 2005,40(4):413-421.

[36] Dwyer J J, Wilson K L, Davison D K, et al. Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci USA, 2007, 104: 12772-12777.

[37] Soonthornsata B, Tian Y S, Utachee P, et al. Design and evaluation of antiretroviral peptides corresponding to the C-terminal heptad repeat region (C-HR) of human immunodeficiency virus type 1 envelope glycoprotein gp41. Virology, 2010, 405: 157-164.

[38] Huang W, Groothuys S, Heredia A, et al. Enzymatic glycosylation of triazole-linked GlcNAc/Glc-Peptides:synthesis,stability and anti-HIV activity of triazole-linked HIV-1 gp41 glycopeptide C34 analogues. ChemBioChem, 2009,10(7)1234-1242.

[39] Watabe T, Terakawa Y, Watanabe K, et al. X-ray crystallographic study of an HIV-1 fusion inhibitor with the gp41 S138A substitution. J Mol Biol, 2009, 392:657-665.

[40] FusoGen. Available at: http://www.fusogen.com en/indexen.asp.html.Date accessed: August 2, 2010].

[41] Deng Y, Zheng Q, Ketas T J, et al. Protein design of a bacterially expressed HIV-1 gp41 fusion inhibitor. Biochemistry,2007, 46:4360-4369.

[42] . Pang W, Wang R R, Yang L M, et al. Recombinant protein of heptad-repeat HR212, a stable fusion inhibitor with potent anti-HIV action in vitro. Virology, 2008, 377:80-87.

[43] He Y, Liu S, Jing W, et al. Conserved residue Lys574 in the cavity of HIV-1 gp41 coiled-coil domain is critical for sixhelix bundle stability and virus entry. J Biol Chem, 2007, 282:25631-25639.

[44] Huang L, Lai W, Ho P, et al. Induction of a nonproductive conformational change in gp120 by a small molecule HIV type 1 entry inhibitor. AIDS Res Hum Retroviruses, 2007, 23(1):28-32.

[45] Ji C, Zhang J, Dioszegi M, et al. CCR5 small-molecule antagonists and monoclonal antibodies exert potent synergistic antiviral effects by cobinding to the receptor. Mol Pharmacol, 2007, 72: 18-28.

[46] Pan C, Cai L, Lu H, et al. Combinations of the first and next generation HIV fusion inhibitors exhibit highly potent synergistic effect against enfuvirtide-sensitive and resistant HIV-1 strains. J Virol, 2009, 83:7862-7872.

[47] Ho D D. Therapy of HIV infections: problems and prospects. Bull N Y Acad Med, 1996, 73:37-45.

[48] Kopetzki E, Jekle A, Ji C, et al. Closing two doors of viral entry: intramolecular combination of a coreceptor- and fusion inhibitor of HIV-1. J Virol, 2008, 5:56.

[49] Jekle A, Chow E, Kopetzki E, et al. CD4-BFFI: A novel, bifunctional HIV-1 entry inhibitor with high and broad antiviral potency. Antiviral Resaerch, 2009, 83:257-266.

[1] 安明晖,田文,韩晓旭,尚红. 表达HIV单链抗体的重组乳酸杆菌的构建及表型分析 *[J]. 中国生物工程杂志, 2019, 39(10): 1-8.
[2] 李文,陈洁,胡伟男,漆亚云,付毅红,刘佳敏,王贞超,欧阳贵平. EGFR耐药突变及其小分子抑制剂研究进展 *[J]. 中国生物工程杂志, 2019, 39(10): 97-104.
[3] 袁雅红, 赵珊珊, 王小莉, 腾智平, 李东升, 曾毅. HIV-1 Tat蛋白抑制骨髓间充质干细胞的造血支持功能[J]. 中国生物工程杂志, 2017, 37(6): 1-8.
[4] 王小莉, 余庆, 袁雅红, 腾智平, 李东升, 曾毅. 打靶恒河猴CD4+ T细胞的TRIM5α基因影响其感染HIV的能力[J]. 中国生物工程杂志, 2017, 37(2): 15-19.
[5] 顾丽娜,李良智,郭伟强,顾竟生,姚雪梅,鞠鑫. HOG1抑制剂调节球头三型孢菌多元醇生产及机理 *[J]. 中国生物工程杂志, 2017, 37(12): 40-48.
[6] 郭雪娇, 查健, 姚坤, 王昕, 李炳志, 元英进. 选育耐受复合抑制剂酿酒酵母提高乙醇产量[J]. 中国生物工程杂志, 2016, 36(5): 97-105.
[7] 朱云鹏, 王鹏, 夏博然, 唐延婷, 王权. SARS冠状病毒主蛋白酶抑制剂的筛选及抑制动力学研究[J]. 中国生物工程杂志, 2016, 36(4): 35-42.
[8] 向缅, 朱建全, 俞继华, 李洋洋, 李娟娟, 刘祖碧, 王万军, 廖海, 周嘉裕. 决明胰蛋白酶抑制剂1活性相关残基的定点突变与抑制活性分析[J]. 中国生物工程杂志, 2016, 36(10): 15-20.
[9] 覃凌云, 陈蓉, 苏正定. Mdm2/MdmX抑制剂[J]. 中国生物工程杂志, 2015, 35(9): 78-84.
[10] 田聪会, 唐延婷, 王权, 周红刚. 以Neprilysin蛋白酶为靶标的药物筛选模型的建立及应用[J]. 中国生物工程杂志, 2015, 35(2): 52-58.
[11] 阮景军, 杨毅, 唐自钟, 陈惠. 基于定点突变技术对苦荞麦胰蛋白酶抑制剂活性位点的研究[J]. 中国生物工程杂志, 2015, 35(12): 30-36.
[12] 崔宏娣, 邵正, 邓莉, 司徒永立, 彭礼飞. Kunitz型丝氨酸蛋白酶抑制剂IsKuI-1的原核表达、纯化及活性研究[J]. 中国生物工程杂志, 2014, 34(12): 30-35.
[13] 朱羿龙, 李昌, 郭焱, 刘存霞, 杜寿文, 王茂鹏, 金宁一. 表达HIV-1 gag重组鸡痘病毒的构建与筛选[J]. 中国生物工程杂志, 2014, 34(1): 57-63.
[14] 胡敏, 宋培培, 湛晓琴, 吕自兰, 陈楚, 施琼, 翁亚光. C-myc通过调控BubR1影响食管鳞癌细胞对紫杉醇的敏感性[J]. 中国生物工程杂志, 2013, 33(4): 22-27.
[15] 聂伦, 吴文言. RANTES衍生物与HIV-1进入抑制剂[J]. 中国生物工程杂志, 2013, 33(2): 96-102.