Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (11): 69-74    
技术与方法     
一种安全高效的血红蛋白纯化方法
臧家涛, 刘建仓, 徐竞, 李东红, 刘良明
第三军医大学野战外科研究所 重庆 400042
An Efficient and Safe Method for Hemoglobin Purification
ZANG Jia-tao, LIU Jian-cang, XU Jing, LI Dong-hong, LIU Liang-ming
Second Department of the Institute of Surgery, Third Military Medical University, Chongqing 400042, China
 全文: PDF(625 KB)   HTML
摘要:

目的:建立一种适用于大量制备的,安全、高效的血红蛋白纯化方法。方法: 将压积红细胞装入透析袋,以含有还原剂的Tris缓冲液透析破碎,破碎的上清经两级硫酸铵沉淀后透析至上样缓冲体系,离心后取上清即得血红蛋白提取液;红细胞提取液通过阴离子交换柱层析进一步分离,计算回收率。纯化产物浓缩后以SDS-PAGE及HPLC鉴定纯度,进行紫外-可见光谱扫描并以ABL800血气分析仪分析血气指标,以鲎试剂测定内毒素含量,以磷测定法测定脂质含量。结果: 血红蛋白提取液中脂质去除率98%,容易通过0.45μm滤膜;经阴离子交换层析纯化的血红蛋白经SDS-PAGE(银染法)及WB分析没有杂蛋白条带,HPLC分析纯度>99%、总回收率>85%;内毒素含量<2 EU,高铁血红蛋白含量<5%。结论: 该血红蛋白纯化方法安全高效、成本低廉、易于放大生产,具有较好的应用前景。

关键词: 血红蛋白阴离子交换层析硫酸铵沉淀纯化    
Abstract:

Objective: To build up a hemoglobin purification method which could meet the needs of safety, efficiency and scale amplification. Methods: Packed red blood cells were lysed by dialyzing against 10 mmol/L Tris-HCl (pH 8.0) containing 0.15% (M/V) ascorbic acid at 4℃ for 3 h with the buffer changed once an hour, and then centrifuged at 10 000 g for 10 min (4℃). The supernatant was treated with ammonium sulfate by the two-step salting-out operation to the saturation of 20% and 46% (M/V, calibrated at 0℃) subsequently, and then the precipitated protein was re-suspended using the equalizing buffer (25 mmol/L Tris, 10 mmol/L NaCl pH 8.5) with the equal volume to that of the packed red blood cells. After dialyzing against the equalizing buffer for at 4℃ for 3 h with the same changing interval, the protein solution was diluted with the equalizing buffer by the ration of 1∶2 (V/V) and centrifuged at 12 000 g for 20 min (4℃). The supernatant after centrifugation, namely the rough hemoglobin extract, was loaded to an 50 mm*200 mm (d*h) Q sapharose FF anion exchange chromatography column pre-equalized with the equalizing buffer and then hemoglobin was eluted using 25 mmol/L Tris, 80 mmol/L NaCl pH 8.5. The purity of samples from different processed was analyzed by SDS-PAGE and HPLC, and the oxygen-binding status was characterized by the UV-Vis spectrum scanning and blood-gas indexes, which were provided by the Thermo Multiscan Spectrum and ABL800 Flex Blood-gas Analyzer respectively. Lipoprotein concentration was tested by the phosphorus determination method and LPS was determined using the stachypleus amebocyte lysate with the sensitivity of 0.3 EU/ml, 0.1 EU/ml and 0.03 EU/ml. Results more than 98% lipids were removed in the rough hemoglobin extracts compared with hemoglobin extracts prepared by the conventional method, and this rough hemoglobin extracts could easily go through the 0.45 μm cellulose nitrate membrane. In the following anion exchange chromatography process, it could be observed that column contaminants were efficiently removed by the two-step ammonium sulfate precipitation. No other protein but hemoglobin could be detected in the hemoglobin purified by anion exchange chromatography through SDS-PAGE (silver staining) and WB, and HPLC analysis indicated a purity of above 99%. The total recovery of hemoglobin in the anion exchange chromatography was above 85%, and most hemoglobin molecules were in the ferrous oxyhemoglobin status and methemoglobin was less than 5% in the purified hemoglobin revealed by UV-Vis spectrum scanning and blood-gas determination. LPS was less than 2EU/ml. Conclusion: The hemoglobin purification method introduced above could meet the need of safety, efficiency, cost control and amplification, and a good application could be expected in the future.

Key words: Hemoglobin    Anion exchange chromatography    Ammonium sulfate precipitation    Purification
收稿日期: 2011-07-01 出版日期: 2011-11-25
ZTFLH:  Q513  
基金资助:

国家"973"计划资助项目(2005CB522601)

通讯作者: 刘良明     E-mail: liangmingliu@yahoo.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

臧家涛, 刘建仓, 徐竞, 李东红, 刘良明. 一种安全高效的血红蛋白纯化方法[J]. 中国生物工程杂志, 2011, 31(11): 69-74.

ZANG Jia-tao, LIU Jian-cang, XU Jing, LI Dong-hong, LIU Liang-ming. An Efficient and Safe Method for Hemoglobin Purification. China Biotechnology, 2011, 31(11): 69-74.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I11/69


[1] Hu D, Kluger R. Functional cross-linked hemoglobin bis-tetramers: geometry and cooperativity. Biochemistry, 2008, 47(47):12551-12561.

[2] Kaneda S, Ishizuka T, Goto H, et al. Liposome-Encapsulated Hemoglobin, TRM-645: Current Status of the Development and Important Issues for Clinical Application. Artif Organs, 2009,33(2):146-152.

[3] Svergun D I, Ekstrm F, Vandegriff K D, et al. Solution Structure of Poly(ethylene) Glycol-Conjugated Hemoglobin Revealed by Small-Angle X-Ray Scattering: Implications for a New Oxygen Therapeutic. Biophysical Journal, 2008, 94(1): 173-181.

[4] Duan L, He Q, Yan X H, et al. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochemical and Biophysical Research Communications, 2007, 354(2): 357-362.

[5] Graves P E, Henderson D P, Horstman M J, et al. Enhancing stability and expression of recombinant human hemoglobin in E.coli: Progress in the development of a recombinant HBOC source.Biochim Biophys Acta, 2008, 1784(10):1471-1479.

[6] Cai J, Meng W F, Hong M, et al. Chemically modified porcine hemoglobins and their biological properties. Protein and Peptide Letters, 2004, 11(4): 353-360.

[7] Sakai H, Takeoka S, Yokohama H, et al. Purification of concentrated hemoglobin using organic solvent and heat treatment. Protein Expr Purif, 1993, 4(6): 563-569.

[8] Wiencek J M, Nabi A, Boo J Y. Hemoglobin extraction using cosurfactant-free nonionic microemulsions. Separation Science and Technology, 1994, 29(7): 923-929.

[9] Andrade C T, Barros L A M, Azero M C P. Purification and characterization of human hemoglobin: effect of the hemolysis conditions. International Journal of Biological Macromolecules, 2004, (34): 233-240.

[10] Michael L, Parchman, J A, Pugh R L, et al. Competing demands or clinical inertia: The case of elevated glycosylated hemoglobin. Annals of Family Medicine, 2007, 5:196-201.

[11] Moore E E, Johnson J L, Moore F A, et al. The USA multicenter prehosptial hemoglobin-based oxygen carrier resuscitation trial: scientific rationale, study design, and results. Crit Care Clin, 2009,25(2):325-356.

[1] 张玲,曹小丹,杨海旭,李文蕾. 连续流层析技术在亲和层析中的应用及生产放大评估[J]. 中国生物工程杂志, 2021, 41(6): 38-44.
[2] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.
[3] 吕一凡,李更东,薛楠,吕国梁,时邵辉,王春生. LbCpf1基因的原核表达、纯化与体外切割检测 *[J]. 中国生物工程杂志, 2020, 40(8): 41-48.
[4] 蒋丹丹,王云龙,李玉林,张怡青. 含RGD修饰的病毒样颗粒递送ICG靶向肿瘤的研究 *[J]. 中国生物工程杂志, 2020, 40(7): 22-29.
[5] 谢航航,白红妹,叶超,陈永俊,袁明翠,马雁冰. 易发生聚集的重组HBcAg病毒样颗粒的纯化*[J]. 中国生物工程杂志, 2020, 40(5): 40-47.
[6] 位薇,常保根,王英,路福平,刘夫锋. Tau蛋白核心片段306~378的异源表达、纯化及聚集特性验证*[J]. 中国生物工程杂志, 2020, 40(5): 22-29.
[7] 刘珍珍,田大勇. 狂犬病疫苗蔗糖密度梯度离心纯化工艺开发 *[J]. 中国生物工程杂志, 2020, 40(4): 25-33.
[8] 朱彤彤,杨磊,刘应保,孙文秀,张修国. 辣椒疫霉PcCRN20-C蛋白的表达纯化及结晶 *[J]. 中国生物工程杂志, 2020, 40(1-2): 116-123.
[9] 潘炳菊,张宛怡,申会涛,刘婷婷,李中媛,罗学刚,宋亚囝. 甘露寡糖分离纯化研究进展*[J]. 中国生物工程杂志, 2020, 40(11): 90-95.
[10] 谢玉锋,韩雪梅,路福平. 副干酪乳杆菌β-葡糖苷酶的表达、纯化及酶学性质研究 *[J]. 中国生物工程杂志, 2019, 39(5): 72-79.
[11] 付大伟,孙莹莹,徐伟. 融合蛋白NusA-hRI的高效异源表达、纯化及活性分析[J]. 中国生物工程杂志, 2019, 39(3): 21-28.
[12] 景佳美,徐欣,王敏,彭如超,施一. 沙粒病毒聚合酶C端的表达纯化与结晶条件筛选 *[J]. 中国生物工程杂志, 2019, 39(12): 18-23.
[13] 朱梦露,王雪雨,刘鑫,路福平,孙登岳,秦慧民. 一种新型亮氨酸5-羟化酶NmLEH的异源表达、纯化及酶学性质分析 *[J]. 中国生物工程杂志, 2019, 39(12): 24-34.
[14] 童超迪,吴坚平,杨立荣,徐刚. X射线衍射晶体法解析脱卤酶DehDIV-R结构的研究 *[J]. 中国生物工程杂志, 2018, 38(8): 19-25.
[15] 陈军军,娄颖,张元兴,刘琴,刘晓红. 增殖细胞核抗原蛋白在Spodoptera frugiperda昆虫细胞中的表达及纯化 *[J]. 中国生物工程杂志, 2018, 38(7): 14-20.