Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (11): 107-113    
综述     
植物类胡萝卜素生物合成及功能
霍培, 季静, 王罡, 关春峰
天津大学农业与生物工程学院 天津 300072
Biosynthesis and Function of Carotenoid in Plant
HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng
School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072, China
 全文: PDF(736 KB)   HTML
摘要:

详述了植物类胡萝卜素生物合成途径,并从突破类胡萝卜素合成途径中上游瓶颈限制、类胡萝卜素代谢各分支途径的改造、提高植物细胞对类胡萝卜素物质积累能力三个方面探讨了类胡萝卜素生物合成酶基因在植物基因工程中的研究现状,最后对植物类胡萝卜素代谢的研究前景进行了展望。

关键词: 类胡萝卜素生物合成基因工程    
Abstract:

The carotenoids are a major class of organic pigments produced in plants. As such they have been the focus of multidisciplinary research programs aiming to understand how they are synthesized in plants. The development of plant carotenoids biosynthesis is summarized from three aspects: breakthrough the bottlenecks in the carotenoids upstream pathway; improving the carotenoids metabolic pathways branch; enhancing storage capacity for carotenoids accumulation in plant cell. Finally, some challenges and future research directions are outlined.

Key words: Carotenoid    Biosynthesis    Genetic engineering
收稿日期: 2010-12-20 出版日期: 2011-11-25
ZTFLH:  Q81  
基金资助:

国家转基因生物新品种培育科技重大专项资助项目(2009ZX08003-019B、2008ZX08003-005、2008ZX08004-001、2009ZX08010-013B)

通讯作者: 季静     E-mail: jingjitju@live.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

霍培, 季静, 王罡, 关春峰. 植物类胡萝卜素生物合成及功能[J]. 中国生物工程杂志, 2011, 31(11): 107-113.

HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng. Biosynthesis and Function of Carotenoid in Plant. China Biotechnology, 2011, 31(11): 107-113.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I11/107


[1] Demmig-Adams B, Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci, 1996, 1: 21-26.

[2] August C F, Shizue M, Birgit O. Photoinhibition carotenoid composition and the co-regulation of photochemical and non-photochemical quenching in neotropical savanna trees. Tree Physiol, 2007, 27(5): 717-725.

[3] McNulty H P, Byun J, Lockwood S F, et al. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim. Biophys Acta, 2007, 1768(1): 167-174.

[4] Gomez-Roldan V, Fermas S, Brewer P B, et al. Strigolactone inhibition of shoot branching. Nature, 2008, 455(7210): 189-194.

[5] Umehara M, Hanada A, Yoshida S, et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 2008, 455(7210): 195-200.

[6] Olson J A. Needs and sources of carotenoids and vitamin A. Nutr Rev, 1994, 52(2 Pt 2): S67-73.

[7] Fraser P D, Bramley P M. The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res, 2004, 43(3): 228-265.

[8] Harrison E H. Mechanisms of digestion and absorption of dietary vitamin A, Annu Rev Nutr, 2005, 25: 7-103.

[9] Rao A, Rao L. Carotenoids and human health. Pharmacol. Res, 2007, 55: 207-216.

[10] Landrum J, Bone R. Lutein, zeaxanthin, and the macular pigment. Arch Biochem Biophys, 2001, 385(1): 28-40.

[11] Krinsky N, Landrum J, Bone A. Biologic mechanisms of the protective role of Lutein and zeaxanthin in the eye. Annu Rev Nutr, 2003, 23: 171-201.

[12] Zhan A Y, You X L, Zhan Y G. Biosynthetic pathway and applications of plant terpenoid isoprenoid. Letters in Biotechnology, 2010, 21(1): 131-135

[13] Li F, Murillo C, Wurtzel E T. Maize Y9 encodes a product essential for 15-ciszeta-carotene isomerization. Plant Physiol, 2007, 144: 1181-1189.

[14] Breitenbach J, Sandmann G. zeta-Carotene cis isomers as products and substrates in the plant poly-cis carotenoid biosynthetic pathway to lycopene Planta, 2005, 220: 785-793.

[15] Maass D, Arango J, Wüst F, et al. Carotenoid Crystal Formation in Arabidopsis and Carrot Roots Caused by Increased Phytoene Synthase Protein Levels. Journal of Chemical Technology and Biotechnology, 2009, 84(2): 215-222.

[16] Chu B S, Ichikawa S, Kanafusa S, et al. Preparation of protein-stabilized β-carotene nanodispersions by emulsification-evaporation method Journal of the American Oil Chemists Society, 2007, 84(11): 1053-1062.

[17] Hirschberg J. Caritenoid biosynthesis in flowering plants. Currt Opin Plant Biol, 2001, 4: 210-218.

[18] Kim J, DellaPenna D. Defining the primary route for lutein synthesis in plants:the role of Arabidopsis carotenoid b-ring hydroxylase CYP97A3. Proc Natl Acad Sci USA, 2006, 103: 3474-3479.

[19] Quinlan R F, Jaradat T T, Wurtzel E T. Escherichia coli as a platform for functional expression of plant P450 carotene hydroxylases. Arch Biochem Biophys, 2007, 458(2): 146-157.

[20] Kim J E, Cheng K M, Craft N E, et al. Over-expression of Arabidopsis thaliana carotenoid hydroxylases individually and in combination with a beta-carotene ketolase provides insight into in vivo functions. Phytochemistry, 2010, 71(2-3): 168-178.

[21] Miguel F, Martín A, Mattea F, et al. Precipitation of lutein and co-precipitation of lutein and poly-lactic acid with the supercritical anti-solvent process. Chemical Engineering and Processing: Process Intensification, 2008, 47(9-10): 1594-1602.

[22] Linden A, Bürgi B, Eugster C H. Confirmation of the structures of lutein and zeaxanthin. Helvetica Chimica Acta, 2004, 87(5): 1254-1269.

[23] Sun Z R, Gantt E, Cunningham F X. Cloning and functional analysis of the β-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem, 1996, 271: 24349-24352.

[24] Tian L, DellaPenna D. Characterization of a second carotenoid β-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol Biol, 2001, 47: 379-388.

[25] Li F, Murillo C, Wurtzel E T. Maize Y9 encodes a product essential for 15-cis-zeta-carotene isomerization. Plant Physiol, 2007, 144: 1181-1189.

[26] Harrison E H. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim Biophys Acta, 2011, 12. .

[27] Reboul E, Borel P. Proteins involved in uptake, intracellular transport and basolateral secretion of fat-soluble vitamins and carotenoids by mammalian enterocytes. Proq Lipid Res, 2011, 50(4): 388-402.

[28] Aluru M, Xu Y, Guo R, et al. Generation of transgenic maize with enhanced provitamin A content. J Exp Bot, 2008, 59 (13): 3551-3562.

[29] Li F, Vallabhaneni R,Yu J, et al. The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm,photomorphogenesis, and thermal stress tolerance. Plant Physiol, 2008, 146: 1334-1346.

[30] Welsch R, Wüst F, Bar C, et al. A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiol, 2008, 147(1): 367-380.

[31] Busch M, Seuter A, Hain R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol, 2002, 128(2): 439-453.

[32] Zhang J, Tao N, Xu Q, et al. Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle). Plant Cell Rep, 2009, 28(11): 1737-1746.

[33] Zhu C, Naqvi S, Breitenbach J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci USA, 2008, 105(47): 18232-18237.

[34] Rosati C, Aquilani R, Dharmapuri S, et al. Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J, 2000, 24(3): 413-420.

[35] Dharmapuri S, Rosati C, Pallara P,et al. Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett, 2002, 519(1-3): 30-34.

[36] Fujisawa M, Takita E, Harada H, et al. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot, 2009, 60 (4): 1319-1332.

[37] Kato M, Ikoma Y, Matsumoto H, et al. Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit, Plant Physiol, 2004, 134: 824-837.

[38] Lu S, Van Eck J, Zhou X, et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell,2006, 18 (12): 3594-3605.

[39] Lopez A B, Van Eck J, Conlin B J, et al. Effect of the cauliflower Or transgene on carotenoid accumulation and chromoplast formation in transgenic potato tubers. J Exp Bot, 2008, 59 (2): 213-223.

[40] Jayaraj J, Devlin R, Punja Z. Metabolic engineering of novel ketocarotenoid production in carrot plants. Transgenic Res, 2008, 17 (4): 489-501.

[41] Apel W, Bock R. Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitaminAconversion. Plant Physiol, 2009, 151(1): 59-66.

[1] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[2] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[3] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[4] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[5] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[6] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[7] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[8] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[9] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[10] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.
[11] 闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.
[12] 彭向雷,王烨,王丽男,苏彦斌,付远辉,郑妍鹏,何金生. 单引物PCR法引入定点突变 *[J]. 中国生物工程杂志, 2020, 40(8): 19-23.
[13] 刘迪,张洪春. 慢性阻塞性肺疾病基因工程动物模型研究进展 *[J]. 中国生物工程杂志, 2020, 40(4): 59-68.
[14] 刘金丛,刘雪,於洪建,赵广荣. 微生物合成根皮素及其糖苷研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 76-84.
[15] 陈春琳,秦松,宋宛霖,刘志丹,刘正一. 褐藻寡糖生物法制备研究进展 *[J]. 中国生物工程杂志, 2020, 40(10): 85-95.